Pocket Modification of ω-Amine Transaminase AtATA for Overcoming the Trade-Off Between Activity and Stability Toward 1-Acetonaphthone

Jiaren Cao, Fangfang Fan, Changjiang Lyu, Sheng Hu, Weirui Zhao, Jiaqi Mei, Shuai Qiu, Lehe Mei, Jun Huang

Engineering ›› 2023, Vol. 30 ›› Issue (11) : 203-214.

PDF(3214 KB)
PDF(3214 KB)
Engineering ›› 2023, Vol. 30 ›› Issue (11) : 203-214. DOI: 10.1016/j.eng.2023.04.009
Research
Article

Pocket Modification of ω-Amine Transaminase AtATA for Overcoming the Trade-Off Between Activity and Stability Toward 1-Acetonaphthone

Author information +
History +

Abstract

Amine transaminases (ATAs) catalyze the asymmetric amination of prochiral ketones or aldehydes to their corresponding chiral amines. However, the trade-off between activity and stability in enzyme engineering represents a major obstacle to the practical application of ATAs. Overcoming this trade-off is important for developing robustly engineered enzymes and a universal approach for ATAs. Herein, we modified the binding pocket of ω-ATA from Aspergillus terreus (AtATA) to identify the key amino acid residues controlling the activity and stability of AtATA toward 1-acetonaphthone. We discovered a structural switch comprising four key amino acid sites (R128, V149, L182, and L187), as well as the “best” mutant (AtATA_D224K/V149A/L182F/L187F; termed M4). Compared to the parent enzyme AtATA_D224K (AtATA-Pa), M4 increased the catalytic efficiency (kcat/Km1-acetonaphthone, where kcat is the constant of catalytic activities and is 10.1 min−1, Km1-acetonaphthone is Michaelis-Menten constant and is 1.7 mmol·L-1) and half-life (t1/2) by 59-fold to 5.9 L·min−1·mmol−1 and by 1.6-fold to 46.9 min, respectively. Moreover, using M4 as the biocatalyst, we converted a 20 mmol·L-1 aliquot of 1-acetonaphthone in a 50 mL scaled-up system to the desired product, (R)-(+)-1(1-naphthyl)ethylamine ((R)-NEA), with 78% yield and high enantiomeric purity (R > 99.5%) within 10 h. M4 also displayed significantly enhanced activity toward various 1-acetonaphthone analogs. The related structural properties derived by analyzing structure and sequence information of robust ATAs illustrated their enhanced activity and thermostability. Strengthening of intramolecular interactions and expansion of the angle between the substrate-binding pocket and the pyridoxal 5′-phosphate (PLP)-binding pocket contributed to synchronous enhancement of ATA thermostability and activity. Moreover, this pocket engineering strategy successfully transferred enhanced activity and thermostability to three other ATAs, which exhibited 8%-22% sequence similarity with AtATA. This research has important implications for overcoming the trade-off between ATA activity and thermostability.

Graphical abstract

Keywords

Trade-off / Co-evolution / Amine transaminase / (R)-(+)-1(1-naphthyl)ethylamine

Cite this article

Download citation ▾
Jiaren Cao, Fangfang Fan, Changjiang Lyu, Sheng Hu, Weirui Zhao, Jiaqi Mei, Shuai Qiu, Lehe Mei, Jun Huang. Pocket Modification of ω-Amine Transaminase AtATA for Overcoming the Trade-Off Between Activity and Stability Toward 1-Acetonaphthone. Engineering, 2023, 30(11): 203‒214 https://doi.org/10.1016/j.eng.2023.04.009

References

[1]
T.W. Thorpe, J.R. Marshall, V. Harawa, R.E. Ruscoe, A. Cuetos, J.D. Finnigan, et al.. Multifunctional biocatalyst for conjugate reduction and reductive amination. Nature, 604 (7904) ( 2022), pp. 86-91 DOI: 10.1038/s41586-022-04458-x
[2]
D.J. Newman, G.M. Cragg. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod, 75 (3) ( 2012), pp. 311-335 DOI: 10.1021/np200906s
[3]
W. Zawodny, S.L. Montgomery. Evolving new chemistry: biocatalysis for the synthesis of amine-containing pharmaceuticals. Catalysts, 12 (6) ( 2022), pp. 595-616 DOI: 10.3390/catal12060595
[4]
S. Zhang, J. Del Pozo, F. Romiti, Y. Mu, S. Torker, A.H. Hoveyda. Delayed catalyst function enables direct enantioselective conversion of nitriles to NH2-amines. Science, 364 (6435) ( 2019), pp. 45-51 DOI: 10.1126/science.aaw4029
[5]
M.D. Patil, G. Grogan, A. Bommarius, H. Yun. Oxidoreductase-catalyzed synthesis of chiral amines. ACS Catal, 8 (12) ( 2018), pp. 10985-11015 DOI: 10.1021/acscatal.8b02924
[6]
M. Barniol-Xicota, R. Leiva, C. Escolano, S. Vázquez. Syntheses of cinacalcet: an enantiopure active pharmaceutical ingredient (API). Synthesis, 48 (6) ( 2016), pp. 783-803
[7]
C.Y. Yang, J. Li, Y.Y. Yao, C. Qing, B.C. Shen. Enantioseparation of cinacalcet, and its two related compounds by HPLC with self-made chiral stationary phases and chiral mobile phase additives. Curr Pharm Anal, 15 (2) ( 2019), pp. 200-209 DOI: 10.2174/1573412914666180518105046
[8]
J.A. Barman Balfour, L.J. Scott. Cinacalcet hydrochloride. Drugs, 65 (2) ( 2005), pp. 271-281 DOI: 10.2165/00003495-200565020-00007
[9]
H.U. Blaser. Enantioselective catalysis in fine chemicals production. Chem Commun, 3 (3) ( 2003), pp. 293-296
[10]
T. Yasukawa, R. Masuda, S. Kobayashi. Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nat Catal, 2 (12) ( 2019), pp. 1088-1092 DOI: 10.1038/s41929-019-0371-y
[11]
D. Ghislieri, N.J. Turner. Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top Catal, 57 (5) ( 2014), pp. 284-300 DOI: 10.1007/s11244-013-0184-1
[12]
M. Höhne, U.T. Bornscheuer. Biocatalytic routes to optically active amines. ChemCatChem, 1 (1) ( 2009), pp. 42-51 DOI: 10.1002/cctc.200900110
[13]
D. Ghislieri, A.P. Green, M. Pontini, S.C. Willies, I. Rowles, A. Frank, et al.. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc, 135 (29) ( 2013), pp. 10863-10869 DOI: 10.1021/ja4051235
[14]
V.F. Batista, J.L. Galman, G.A.D.C. Pinto, A.M.S. Silva, N.J. Turner. Monoamine oxidase: tunable activity for amine resolution and functionalization. ACS Catal, 8 (12) ( 2018), pp. 11889-11907 DOI: 10.1021/acscatal.8b03525
[15]
J.S. Völler. Metagenomic imine reductases for synthesis. Nat Catal, 4 (2) ( 2021), p. 2 DOI: 10.1038/s41929-021-00571-8
[16]
P. Yao, J.R. Marshall, Z. Xu, J. Lim, S.J. Charnock, D. Zhu, et al.. Asymmetric synthesis of N-substituted α-amino esters from α-ketoesters via imine reductase-catalyzed reductive amination. Angew Chem Int Ed Engl, 60 (16) ( 2021), pp. 8717-8721 DOI: 10.1002/anie.202016589
[17]
Y.P. Xue, C.H. Cao, Y.G. Zheng. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev, 47 (4) ( 2018), pp. 1516-1561 DOI: 10.1039/c7cs00253j
[18]
D.H. Wang, Q. Chen, S.N. Yin, X.W. Ding, Y.C. Zheng, Z. Zhang, et al.. Asymmetric reductive amination of structurally diverse ketones with ammonia using a spectrum-extended amine dehydrogenase. ACS Catal, 11 (22) ( 2021), pp. 14274-14283 DOI: 10.1021/acscatal.1c04324
[19]
M.D. Patil, G. Grogan, A. Bommarius, H. Yun. Recent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral amines. Catalysts, 8 (7) ( 2018), pp. 254-278
[20]
Q. Yang, F. Zhao, N. Zhang, M. Liu, H. Hu, J. Zhang, et al.. Mild dynamic kinetic resolution of amines by coupled visible-light photoredox and enzyme catalysis. Chem Commun, 54 (100) ( 2018), pp. 14065-14068 DOI: 10.1039/c8cc07990k
[21]
Z.Q. Rong, Z.Y. Yu, C. Weng, L.C. Yang, S.C. Lu, Y. Lan, et al.. Dynamic kinetic asymmetric amination of alcohols assisted by microwave: stereoconvergent access to tetralin- and indane-derived chiral amines. ACS Catal, 10 (16) ( 2020), pp. 9464-9475 DOI: 10.1021/acscatal.0c02468
[22]
V. Bhat, E.R. Welin, X. Guo, B.M. Stoltz. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem Rev, 117 (5) ( 2017), pp. 4528-4561 DOI: 10.1021/acs.chemrev.6b00731
[23]
F. Steffen-Munsberg, C. Vickers, H. Kohls, H. Land, H. Mallin, A. Nobili, et al.. Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol Adv, 33 (5) ( 2015), pp. 566-604
[24]
E.Y. Bezsudnova, V.O. Popov, K.M. Boyko. Structural insight into the substrate specificity of PLP fold type IV transaminases. Appl Microbiol Biotechnol, 104 (6) ( 2020), pp. 2343-2357 DOI: 10.1007/s00253-020-10369-6
[25]
L. Zhai, S. Yang, Y. Lai, D. Meng, Q. Tian, Z. Guan, et al.. Effect of residue substitution via site-directed mutagenesis on activity and steroselectivity of transaminase BpTA from Bacillus pumilus W 3 for sitafloxacin hydrate intermediate. Int J Biol Macromol, 137 ( 2019), pp. 732-740
[26]
D.F. Xie, J.X. Yang, C.J. Lv, J.Q. Mei, H.P. Wang, S. Hu, et al.. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis. J Biotechnol, 293 ( 2019), pp. 8-16
[27]
K. Fesko, K. Steiner, R. Breinbauer, H. Schwab, M. Schürmann, G.A. Strohmeier. Investigation of one-enzyme systems in the ω-transaminase-catalyzed synthesis of chiral amines. J Mol Catal, B Enzym, 96 ( 2013), pp. 103-110
[28]
K. Deepankumar, M. Shon, S.P. Nadarajan, G. Shin, S. Mathew, N. Ayyadurai, et al.. Enhancing thermostability and organic solvent tolerance of ω-transaminase through global incorporation of fluorotyrosine. Adv Synth Catal, 356 (5) ( 2014), pp. 993-998 DOI: 10.1002/adsc.201300706
[29]
Y.Y. Xie, J.G. Wang, L. Yang, W. Wang, Q.H. Liu, H.L. Wang, et al.. The identification and application of a robust ω-transaminase with high tolerance towards substrates and isopropylamine from a directed soil metagenome. Catal Sci Technol, 12 (7) ( 2022), pp. 2162-2175 DOI: 10.1039/d1cy02032c
[30]
F. Guo, P. Berglund. Transaminase biocatalysis: optimization and application. Green Chem, 19 (2) ( 2017), pp. 333-360
[31]
K.S. Siddiqui. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol, 37 (3) ( 2017), pp. 309-322 DOI: 10.3109/07388551.2016.1144045
[32]
S.F. Li, J.Y. Xie, S. Qiu, S.Y. Xu, F. Cheng, Y.J. Wang, et al.. Semirational engineering of an aldo-keto reductase KmAKR for overcoming trade-offs between catalytic activity and thermostability. Biotechnol Bioeng, 118 (11) ( 2021), pp. 4441-4452 DOI: 10.1002/bit.27913
[33]
L. Cui, A.Q. Cui, Q.T. Li, L.Z. Yang, H. Liu, W.G. Shao, et al.. Molecular evolution of an aminotransferase based on substrate-enzyme binding energy analysis for efficient valienamine synthesis. ACS Catal, 12 (21) ( 2022), pp. 13703-13714 DOI: 10.1021/acscatal.2c03784
[34]
S.W. Han, E.S. Park, J.Y. Dong, J.S. Shin. Mechanism-guided engineering of ω-transaminase to accelerate reductive amination of ketones. Adv Synth Catal, 357 (8) ( 2015), pp. 1732-1740 DOI: 10.1002/adsc.201500211
[35]
Q. Meng, N. Capra, C.M. Palacio, E. Lanfranchi, M. Otzen, L.Z. van Schie, et al.. Robust ω-transaminases by computational stabilization of the subunit interface. ACS Catal, 10 (5) ( 2020), pp. 2915-2928 DOI: 10.1021/acscatal.9b05223
[36]
D.F.A.R. Dourado, S. Pohle, A.T.P. Carvalho, D.S. Dheeman, J.M. Caswell, T. Skvortsov, et al.. Rational design of a (S)-selective-transaminase for asymmetric synthesis of (1S)-1-(1,1′-biphenyl-2-yl)ethanamine. ACS Catal, 6 (11) ( 2016), pp. 7749-7759 DOI: 10.1021/acscatal.6b02380
[37]
L. Yang, K. Zhang, M. Xu, Y. Xie, X. Meng, H. Wang, et al.. Mechanism-guided computational design of ω-transaminase by reprograming of high-energy-barrier steps. Angew Chem Int Ed Engl, 61 (52) ( 2022), p. e202212555
[38]
C.K. Savile, J.M. Janey, E.C. Mundorff, J.C. Moore, S. Tam, W.R. Jarvis, et al.. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 329 (5989) ( 2010), pp. 305-309 DOI: 10.1126/science.1188934
[39]
S.J. Novick, N. Dellas, R. Garcia, C. Ching, A. Bautista, D. Homan, et al.. Engineering an amine transaminase for the efficient production of a chiral sacubitril precursor. ACS Catal, 11 (6) ( 2021), pp. 3762-3770 DOI: 10.1021/acscatal.0c05450
[40]
A. Łyskowski, C. Gruber, G. Steinkellner, M. Schürmann, H. Schwab, K. Gruber, et al.. Crystal structure of an (R)-selective ω-transaminase from Aspergillus terreus. PLoS One, 9 (1) ( 2014), p. e87350 DOI: 10.1371/journal.pone.0087350
[41]
J. Huang, D.F. Xie, Y. Feng. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochem Biophys Res Commun, 483 (1) ( 2017), pp. 397-402
[42]
J.R. Cao, F.F. Fan, C.J. Lv, H.P. Wang, Y. Li, S. Hu, et al.. Improving the thermostability and activity of transaminase from Aspergillus terreus by charge-charge interaction. Front Chem, 9 ( 2021), Article 664156
[43]
D. Baud, N. Ladkau, T.S. Moody, J.M. Ward, H.C. Hailes. A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase. Chem Commun, 51 (97) ( 2015), pp. 17225-17228
[44]
F.H. Niesen, H. Berglund, M. Vedadi. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc, 2 (9) ( 2007), pp. 2212-2221 DOI: 10.1038/nprot.2007.321
[45]
M. Purmonen, J. Valjakka, K. Takkinen, T. Laitinen, J. Rouvinen.Molecular dynamics studies on the thermostability of family 11 xylanases. Protein Eng Des Sel, 20 (11) ( 2007), pp. 551-559 DOI: 10.1093/protein/gzm056
[46]
S.G. Yuan, H.C.S. Chan, Z.Q. Hu. Using PyMOL as a platform for computational drug design. WIREs Comput Mol Sci, 7 (2) ( 2017), p. e1298
[47]
A. Parvez, Y. Ravikumar, R. Bisht, J. Yun, Y. Wang, S.P. Chandrika, et al.. Functional and structural roles of the dimer interface in the activity and stability of Clostridium butyricum 1,3-propanediol oxidoreductase. ACS Synth Biol, 11 (3) ( 2022), pp. 1261-1271 DOI: 10.1021/acssynbio.1c00555
[48]
X. Yu, X. Wang, P.C. Engel. The specificity and kinetic mechanism of branched-chain amino acid aminotransferase from Escherichia coli studied with a new improved coupled assay procedure and the enzyme’s potential for biocatalysis. FEBS J, 281 (1) ( 2014), pp. 391-400 DOI: 10.1111/febs.12609
Funding
the National Natural Science Foundation of China(32071268, 31971372); the Ningbo “Scientific and Technological Innovation 2025” Key Project(2020Z080)
AI Summary AI Mindmap
PDF(3214 KB)

Accesses

Citations

Detail

Sections
Recommended

/