Dietary Lipid Intervention in the Prevention of Brain Aging

Wei Xiong, Bing Fang, Xiaoyu Wang, Ming Zhang, Min Du, Jiazeng Sun, Juan Chen, Yixuan Li, Changhao Sun, Xingen Lei, Xue Zhang, Fazheng Ren

Engineering ›› 2024, Vol. 37 ›› Issue (6) : 140-150.

PDF(1219 KB)
PDF(1219 KB)
Engineering ›› 2024, Vol. 37 ›› Issue (6) : 140-150. DOI: 10.1016/j.eng.2023.04.012
Research
Review

Dietary Lipid Intervention in the Prevention of Brain Aging

Author information +
History +

Abstract

As people live longer, the burden of aging-related brain diseases, especially dementia, is increasing. Brain aging increases the risk of cognitive impairment, which manifests as a progressive loss of neuron function caused by the impairment of synaptic plasticity via disrupting lipid homeostasis. Therefore, supplemental dietary lipids have the potential to prevent brain aging. This review summarizes the important roles of dietary lipids in brain function from both structure and mechanism perspectives. Epidemiological and animal studies have provided evidence of the functions of polyunsaturated fatty acids (PUFAs) in brain health. The results of interventions indicate that phospholipids—including phosphatidylcholine, phosphatidylserine, and plasmalogen—are efficient in alleviating cognitive impairment during aging, with plasmalogen exhibiting higher efficacy than phosphatidylserine. Plasmalogen is a recognized nutrient used in clinical trials due to its special vinyl ether bonds and abundance in the postsynaptic membrane of neurons. Future research should determine the dose-dependent effects of plasmalogen in alleviating brain-aging diseases and should develop extraction and storage procedures for its clinical application.

Graphical abstract

Keywords

Brain aging / Nutritional intervention / Phospholipids / Phosphatidylcholine / Phosphatidylserine / Plasmalogen

Cite this article

Download citation ▾
Wei Xiong, Bing Fang, Xiaoyu Wang, Ming Zhang, Min Du, Jiazeng Sun, Juan Chen, Yixuan Li, Changhao Sun, Xingen Lei, Xue Zhang, Fazheng Ren. Dietary Lipid Intervention in the Prevention of Brain Aging. Engineering, 2024, 37(6): 140‒150 https://doi.org/10.1016/j.eng.2023.04.012

References

[1]
A.V. Akimov, K.A. Gemueva, N.K. Semenova. The seventh population census in the PRC: results and prospects of the country’s demographic development. Herald Russ Acad Sci, 91 (6) (2021), pp. 724-735.
[2]
M.J. Prince, F. Wu, Y. Guo, L.M. Gutierrez Robledo, M. O’Donnell, R. Sullivan, et al. The burden of disease in older people and implications for health policy and practice. Lancet, 385 (9967) (2015), pp. 549-562.
[3]
GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol, 16 (11) (2017), pp. 877-897.
[4]
L. Jia, M. Quan, Y. Fu, T. Zhao, Y. Li, C. Wei, et al. Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol, 19 (1) (2020), pp. 81-92.
[5]
GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol, 18 (1) (2019), pp. 88-106.
[6]
World Health Organisation (WHO). Global status report on the public health response to dementia. World Health Organisation, Geneva (2021).
[7]
J. Jia, C. Wei, S. Chen, F. Li, Y. Tang, W. Qin, et al. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement, 14 (4) (2018), pp. 483-491.
[8]
R. Peters. Ageing and the brain. Postgrad Med J, 82 (964) (2006), pp. 84-88.
[9]
M.A.E. De van der Schueren, S. Lonterman-Monasch, W.M. van der Flier, M.H. Kramer, A.B. Maier, M. Muller. Malnutrition and risk of structural brain changes seen on magnetic resonance imaging in older adults. J Am Geriatr Soc, 64 (12) (2016), pp. 2457-2463.
[10]
B. Hooshmand, F. Mangialasche, G. Kalpouzos, A. Solomon, I. Kåreholt, A. David Smith, et al. Association of vitamin B 12, folate, and sulfur amino acids with brain magnetic resonance imaging measures in older adults: a longitudinal population-based study. JAMA Psychiatry, 73 (6) (2016), pp. 606-613.
[11]
A. Citri, R.C. Malenka. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33 (1) (2008), pp. 18-41.
[12]
D.M. Cuestas Torres, F.P. Cardenas. Synaptic plasticity in Alzheimer’s disease and healthy aging. Rev Neurosci, 31 (3) (2020), pp. 245-268.
[13]
J.C. Magee, C. Grienberger. Synaptic plasticity forms and functions. Annu Rev Neurosci, 43 (1) (2020), pp. 95-117.
[14]
A.J. Hung, M.G. Stanbury, M. Shanabrough, T.L. Horvath, L.M. Garcia-Segura, F. Naftolin. Estrogen, synaptic plasticity and hypothalamic reproductive aging. Exp Gerontol, 38 (1-2) (2003), pp. 53-59.
[15]
Y. Wang. Differential effect of aging on synaptic plasticity in the ventral and dorsal striatum. Neurobiol Learn Mem, 89 (1) (2008), pp. 70-75.
[16]
A. Bhandari, S. Kalotra, P. Bajaj, A. Sunkaria, G. Kaur. Dietary intervention with Tinospora cordifolia improved aging-related decline in locomotor coordination and cerebellar cell survival and plasticity in female rats. Biogerontology, 23 (6) (2022), pp. 809-824.
[17]
S. Mondragón-Rodríguez, G. Perry, X. Zhu, J. Boehm. Amyloid beta and tau proteins as therapeutic targets for Alzheimer’s disease treatment: rethinking the current strategy. Int J Alzheimers Dis, 2012 (2012), Article 630182.
[18]
W. Sun, E. McConnell, J.F. Pare, Q. Xu, M. Chen, W. Peng, et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science, 339 (6116) (2013), pp. 197-200.
[19]
C.M. Norris, D.L. Korol, T.C. Foster. Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging. J Neurosci, 16 (17) (1996), pp. 5382-5392.
[20]
E. Sikora, A. Bielak-Zmijewska, M. Dudkowska, A. Krzystyniak, G. Mosieniak, M. Wesierska, et al. Cellular senescence in brain aging. Front Aging Neurosci, 13 (2021), Article 646924.
[21]
D.L. Dickstein, D. Kabaso, A.B. Rocher, J.I. Luebke, S.L. Wearne, P.R. Hof. Changes in the structural complexity of the aged brain. Aging Cell, 6 (3) (2007), pp. 275-284.
[22]
D.A. Nicholson, R. Yoshida, R.W. Berry, M. Gallagher, Y. Geinisman. Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments. J Neurosci, 24 (35) (2004), pp. 7648-7653.
[23]
Q. Yu, C. Zhong. Membrane aging as the real culprit of Alzheimer’s disease: modification of a hypothesis. Neurosci Bull, 34 (2) (2018), pp. 369-381.
[24]
A. Kumar. NMDA receptor function during senescence: implication on cognitive performance. Front Neurosci, 9 (2015), p. 473.
[25]
C.M. Hernandez, J.A. McQuail, M.R. Schwabe, S.N. Burke, B. Setlow, J.L. Bizon. Age-related declines in prefrontal cortical expression of metabotropic glutamate receptors that support working memory. eNeuro, 5 (3) (2018). ENEURO.0164-18.2018.
[26]
M. Brini, T. Calì, D. Ottolini, E. Carafoli. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci, 71 (15) (2014), pp. 2787-2814.
[27]
M.R. Lyons, A.E. West. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol, 94 (3) (2011), pp. 259-295.
[28]
M. Westra, Y. Gutierrez, H.D. MacGillavry. Contribution of membrane lipids to postsynaptic protein organization. Front Synaptic Neurosci, 13 (2021), p. 790773.
[29]
F. Mochel. Lipids and synaptic functions. J Inherit Metab Dis, 41 (6) (2018), pp. 1117-1122.
[30]
C.G. Dotti, J.A. Esteban, M.D. Ledesma. Lipid dynamics at dendritic spines. Front Neuroanat, 8 (2014), p. 76.
[31]
A. Brachet, S. Norwood, J.F. Brouwers, E. Palomer, J.B. Helms, C.G. Dotti, et al. LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery. J Cell Biol, 208 (6) (2015), pp. 791-806.
[32]
P.S. Sastry. Lipids of nervous tissue: composition and metabolism. Prog Lipid Res, 24 (2) (1985), pp. 69-176.
[33]
A. Naudí, R. Cabré, M. Jové, V. Ayala, H. Gonzalo, M. Portero-Otín, et al. Lipidomics of human brain aging and Alzheimer’s disease pathology. Int Rev Neurobiol, 122 (2015), pp. 133-189.
[34]
A. Pérez-Cañamás, S. Benvegnù, C.B. Rueda, A. Rábano, J. Satrústegui, M.D. Ledesma. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease. Mol Psychiatry, 22 (5) (2017), pp. 711-723.
[35]
R. Van der Kant, V.F. Langness, C.M. Herrera, D.A. Williams, L.K. Fong, Y. Leestemaker, et al. Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-β in iPSC-derived Alzheimer’s disease neurons. Cell Stem Cell, 24 (3) (2019), pp. 363-375.
[36]
C. Pararasa, J. Ikwuobe, S. Shigdar, A. Boukouvalas, I.T. Nabney, J.E. Brown, et al. Age- associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPARγ. Aging Cell, 15 (1) (2016), pp. 128-139.
[37]
S. Ando, Y. Tanaka. Synaptic membrane aging in the central nervous system. Gerontology, 36 (Suppl 1) (1990), pp. 10-14.
[38]
S.A. Bennett, N. Valenzuela, H. Xu, B. Franko, S. Fai, D. Figeys. Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer’s disease. Front Physiol, 4 (2013), p. 168.
[39]
S.C. Cunnane, J.A. Schneider, C. Tangney, J. Tremblay-Mercier, M. Fortier, D.A. Bennett, et al. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis, 29 (3) (2012), pp. 691-697.
[40]
J. Tu, Y. Yin, M. Xu, R. Wang, Z.J. Zhu. Absolute quantitative lipidomics reveals lipidome-wide alterations in aging brain. Metabolomics, 14 (1) (2018), p. 5.
[41]
P. Chatterjee, Y.J. Cheong, A. Bhatnagar, K. Goozee, Y. Wu, M. McKay, et al. Plasma metabolites associated with biomarker evidence of neurodegeneration in cognitively normal older adults. J Neurochem, 159 (2) (2021), pp. 389-402.
[42]
M. Kadyrov, L. Whiley, B. Brown, K.I. Erickson, E. Holmes. Associations of the lipidome with ageing, cognitive decline and exercise behaviours. Metabolites, 12 (9) (2022), p. 822.
[43]
M.D. Ledesma, M.G. Martin, C.G. Dotti. Lipid changes in the aged brain: effect on synaptic function and neuronal survival. Prog Lipid Res, 51 (1) (2012), pp. 23-35.
[44]
E. Flanagan, D. Lamport, L. Brennan, P. Burnet, V. Calabrese, S.C. Cunnane, et al. Nutrition and the ageing brain: moving towards clinical applications. Ageing Res Rev, 62 (2020), Article 101079.
[45]
H. Sershen, M.E. Reith, A. Hashim, A. Lajtha. Protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity by the antioxidant ascorbic acid. Neuropharmacology, 24 (12) (1985), pp. 1257-1259.
[46]
F. Monacelli, E. Acquarone, C. Giannotti, R. Borghi, A. Nencioni, C. Vitamin. Aging and Alzheimer’s disease. Nutrients, 9 (7) (2017), p. 670.
[47]
G.M. Pasinetti, J. Wang, L. Ho, W. Zhao, L. Dubner. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta, 1852 (6) (2015), pp. 1202-1208.
[48]
M. Jové, I. Pradas, M. Dominguez-Gonzalez, I. Ferrer, R. Pamplona. Lipids and lipoxidation in human brain aging. Mitochondrial ATP-synthase as a key lipoxidation target. Redox Biol, 23 (2019), p. 101082.
[49]
E. Sezgin, I. Levental, S. Mayor, C. Eggeling. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol, 18 (6) (2017), pp. 361-374.
[50]
T. Harayama, H. Riezman. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol, 19 (5) (2018), pp. 281-296.
[51]
D. Skowronska-Krawczyk, I. Budin. Aging membranes: unexplored functions for lipids in the lifespan of the central nervous system. Exp Gerontol, 131 (2020), Article 110817.
[52]
H.I. Ingólfsson, T.S. Carpenter, H. Bhatia, P.T. Bremer, S.J. Marrink, F.C. Lightstone. Computational lipidomics of the neuronal plasma membrane. Biophys J, 113 (10) (2017), pp. 2271-2280.
[53]
P.C. Calder, P. Yaqoob, D.J. Harvey, A. Watts, E.A. Newsholme. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity. Biochem J, 300 (Pt 2) (1994), pp. 509-518.
[54]
R.A. Bowen, M.T. Clandinin. Dietary low linolenic acid compared with docosahexaenoic acid alter synaptic plasma membrane phospholipid fatty acid composition and sodium-potassium ATPase kinetics in developing rats. J Neurochem, 83 (4) (2002), pp. 764-774.
[55]
V.V. Vaidyanathan, K.V. Rao, P.S. Sastry. Regulation of diacylglycerol kinase in rat brain membranes by docosahexaenoic acid. Neurosci Lett, 179 (1-2) (1994), pp. 171-174.
[56]
G. Li, Y. Li, B. Xiao, D. Cui, Y. Lin, J. Zeng, et al. Antioxidant activity of docosahexaenoic acid (DHA) andn in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture, 151 (1-4) (1997), pp. 97-119.
[57]
K. Shane Broughton, J.W. Wade. Total fat and (n-3):(n-6) fat ratios influence eicosanoid production in mice. J Nutrition, 132 (1) (2002), pp. 88-94.
[58]
A.P. Simopoulos. Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol, 44 (2) (2011), pp. 203-215.
[59]
M. Eriksdotter, I. Vedin, F. Falahati, Y. Freund-Levi, E. Hjorth, G. Faxen-Irving, et al. Plasma fatty acid profiles in relation to cognition and gender in Alzheimer’s disease patients during oral omega-3 fatty acid supplementation: the OmegAD study. J Alzheimers Dis, 48 (3) (2015), pp. 805-812.
[60]
A.V. Witte, L. Kerti, H.M. Hermannstädter, J.B. Fiebach, S.J. Schreiber, J.P. Schuchardt, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex, 24 (11) (2014), pp. 3059-3068.
[61]
L.M. Jaremka, H.M. Derry, R. Bornstein, R.S. Prakash, J. Peng, M.A. Belury, et al. Omega-3 supplementation and loneliness-related memory problems: secondary analyses of a randomized controlled trial. Psychosom Med, 76 (8) (2014), pp. 650-658.
[62]
N. Külzow, A.V. Witte, L. Kerti, U. Grittner, J.P. Schuchardt, A. Hahn, et al. Impact of omega-3 fatty acid supplementation on memory functions in healthy older adults. J Alzheimers Dis, 51 (3) (2016), pp. 713-725.
[63]
K. Yurko-Mauro, D. McCarthy, D. Rom, E.B. Nelson, A.S. Ryan, A. Blackwell, et al. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement, 6 (6) (2010), pp. 456-464.
[64]
Y.P. Zhang, R. Miao, Q. Li, T. Wu, F. Ma. Effects of DHA supplementation on hippocampal volume and cognitive function in older adults with mild cognitive impairment: a 12-month randomized, double-blind, placebo-controlled trial. J Alzheimers Dis, 55 (2) (2016), pp. 497-507.
[65]
S. Andrieu, S. Guyonnet, N. Coley, C. Cantet, M. Bonnefoy, S. Bordes, et al. , MAPT Study Group. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol, 16 (5) (2017), pp. 377-389.
[66]
M.A. Phillips, C.E. Childs, P.C. Calder, P.J. Rogers. No effect of omega-3 fatty acid supplementation on cognition and mood in individuals with cognitive impairment and probable Alzheimer’s disease: a randomised controlled trial. Int J Mol Sci, 16 (10) (2015), pp. 24600-24613.
[67]
J. Baleztena, M. Ruiz-Canela, C. Sayon-Orea, M. Pardo, T. Añorbe, J.I. Gost, et al. Association between cognitive function and supplementation with omega-3 PUFAs and other nutrients in ≥ 75 years old patients: a randomized multicenter study. PLoS ONE, 13 (3) (2018), p. e0193568.
[68]
M.J. Mahmoudi, M. Hedayat, F. Sharifi, M. Mirarefin, N. Nazari, N. Mehrdad, et al. Effect of low dose ω-3 poly unsaturated fatty acids on cognitive status among older people: a double-blind randomized placebo-controlled study. J Diabetes Metab Disord, 13 (1) (2014), p. 34.
[69]
J.M. Geleijnse, E.J. Giltay, D. Kromhout. Effects of n-3 fatty acids on cognitive decline: a randomized, double-blind, placebo-controlled trial in stable myocardial infarction patients. Alzheimers Dement, 8 (4) (2012), pp. 278-287.
[70]
O. Van de Rest, J.M. Geleijnse, F.J. Kok, W.A. van Staveren, C. Dullemeijer, M.G. Olderikkert, et al. Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology, 71 (6) (2008), pp. 430-438.
[71]
C. Samieri, P. Maillard, F. Crivello, C. Proust-Lima, E. Peuchant, C. Helmer, et al. Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology, 79 (7) (2012), pp. 642-650.
[72]
C. Samieri, C. Féart, L. Letenneur, J.F. Dartigues, K. Pérès, S. Auriacombe, et al. Low plasma eicosapentaenoic acid and depressive symptomatology are independent predictors of dementia risk. Am J Clin Nutr, 88 (3) (2008), pp. 714-721.
[73]
M. Katakura, M. Hashimoto, H.M. Shahdat, S. Gamoh, T. Okui, K. Matsuzaki, et al. Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience, 160 (3) (2009), pp. 651-660.
[74]
F. Calon. Omega-3 polyunsaturated fatty acids in Alzheimer’s disease: key questions and partial answers. Curr Alzheimer Res, 8 (5) (2011), pp. 470-478.
[75]
J.M. Alessandri, P. Guesnet, S. Vancassel, P. Astorg, I. Denis, B. Langelier, et al. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev, 44 (6) (2004), pp. 509-538.
[76]
L. Dagai, R. Peri-Naor, R.Z. Birk. Docosahexaenoic acid significantly stimulates immediate early response genes and neurite outgrowth. Neurochem Res, 34 (5) (2009), pp. 867-875.
[77]
D. Cao, K. Kevala, J. Kim, H.S. Moon, S.B. Jun, D. Lovinger, et al. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem, 111 (2) (2009), pp. 510-521.
[78]
M. Díaz, F. Mesa-Herrera, R. Marín. DHA and its elaborated modulation of antioxidant defenses of the brain: implications in aging and KB neurodegeneration. Antioxidants, 10 (6) (2021), p. 907.
[79]
J. Jin, Q. Jin, X. Wang, C.C. Akoh. High Sn-2 docosahexaenoic acid lipids for brain benefits, and their enzymatic syntheses: a review. Engineering, 6 (4) (2020), pp. 424-431.
[80]
G. Mazereeuw, N. Herrmann, D.W.L. Ma, L.M. Hillyer, P.I. Oh, K.L. Lanctôt. Omega-3/omega-6 fatty acid ratios in different phospholipid classes and depressive symptoms in coronary artery disease patients. Brain Behav Immun, 53 (2016), pp. 54-58.
[81]
Z. Fu, W. Yan, C.T. Chen, A.K. Nilsson, E. Bull, W. Allen, et al. Omega-3/Omega-6 long-chain fatty acid imbalance in phase I retinopathy of prematurity. Nutrients, 14 (7) (2022), p. 1333.
[82]
K.S. Husted, E.V. Bouzinova. The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. Medicina, 52 (3) (2016), pp. 139-147.
[83]
D. Sugasini, R. Thomas, P.C.R. Yalagala, L.M. Tai, P.V. Subbaiah. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep, 7 (1) (2017), p. 11263.
[84]
H. Che, H. Li, L. Song, X. Dong, X. Yang, T. Zhang, et al. Orally administered DHA-enriched phospholipids and DHA-enriched triglyceride relieve oxidative stress, improve intestinal barrier, modulate inflammatory cytokine and gut microbiota, and meliorate inflammatory responses in the brain in dextran sodium sulfate induced colitis in mice. Mol Nutr Food Res, 65 (15) (2021), p. e2000986.
[85]
M. Wen, Y. Zhao, H. Shi, C. Wang, T. Zhang, Y. Wang, et al. Short- term supplementation of DHA as phospholipids rather than triglycerides improve cognitive deficits induced by maternal omega-3 PUFA deficiency during the late postnatal stage. Food Funct, 12 (2) (2021), pp. 564-572.
[86]
S. Hiratsuka, K. Ishihara, T. Kitagawa, S. Wada, H. Yokogoshi. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice. J Nutr Sci Vitaminol, 54 (6) (2008), pp. 501-506.
[87]
M. Schverer, S.M. O’Mahony, K.J. O’Riordan, F. Donoso, B.L. Roy, C. Stanton, et al. Dietary phospholipids: role in cognitive processes across the lifespan. Neurosci Biobehav Rev, 111 (2020), pp. 183-193.
[88]
Y. Dai, H. Tang, S. Pang. The crucial roles of phospholipids in aging and lifespan regulation. Front Physiol, 12 (2021), p. 775648.
[89]
T. Skotland, K. Sandvig. Need for more focus on lipid species in studies of biological and model membranes. Prog Lipid Res, 86 (2022), p. 101160.
[90]
V. Martín, N. Fabelo, G. Santpere, B. Puig, R. Marín, I. Ferrer, et al. Lipid alterations in lipid rafts from Alzheimer’s disease human brain cortex. J Alzheimers Dis, 19 (2) (2010), pp. 489-502.
[91]
V. García-Morales, F. Montero, D. González-Forero, G. Rodríguez-Bey, L. Gómez-Pérez, M.J. Medialdea-Wandossell, et al. Membrane-derived phospholipids control synaptic neurotransmission and plasticity. PLoS Biol, 13 (5) (2015), p. e1002153.
[92]
M. Kim, A. Nevado-Holgado, L. Whiley, S.G. Snowden, H. Soininen, I. Kloszewska, et al. Association between Plasma ceramides and phosphatidylcholines and hippocampal brain volume in late onset Alzheimer’s disease. J Alzheimers Dis, 60 (3) (2017), pp. 809-817.
[93]
D. Li, C. Hagen, A.R. Fett, H.H. Bui, D. Knopman, P. Vemuri, et al. Longitudinal association between phosphatidylcholines, neuroimaging measures of Alzheimer’s disease pathophysiology, and cognition in the Mayo Clinic Study of Aging. Neurobiol Aging, 79 (2019), pp. 43-49.
[94]
H.Y. Kim, B.X. Huang, A.A. Spector. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res, 56 (2014), pp. 1-18.
[95]
A.L. Petursdottir, S.A. Farr, J.E. Morley, W.A. Banks, G.V. Skuladottir. Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM). Neurobiol Aging, 28 (8) (2007), pp. 1170-1178.
[96]
N.E. Braverman, A.B. Moser. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta, 1822 (9) (2012), pp. 1442-1452.
[97]
D. Fitzner, J.M. Bader, H. Penkert, C.G. Bergner, M. Su, M.T. Weil, et al. Cell-type- and brain-region-resolved mouse brain lipidome. Cell Rep, 32 (11) (2020), p. 108132.
[98]
J.C. Bozelli Jr, R.M. Epand. Plasmalogen replacement therapy. Membranes, 11 (11) (2021), p. 838.
[99]
D.B. Goodenowe, V. Senanayake. Brain ethanolamine phospholipids, neuropathology and cognition: a comparative post-mortem analysis of structurally specific plasmalogen and phosphatidyl species. Front Cell Dev Biol, 10 (2022), p. 866156.
[100]
X. Han, D.M. Holtzman, D.W. McKeel Jr. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem, 77 (4) (2001), pp. 1168-1180.
[101]
S. Mawatari, S. Ohara, Y. Taniwaki, Y. Tsuboi, T. Maruyama, T. Fujino. Improvement of blood plasmalogens and clinical symptoms in Parkinson’s disease by oral administration of ether phospholipids: a preliminary report. Parkinsons Dis (2020), p. 2671070.
[102]
R. Kaddurah-Daouk, J. McEvoy, R. Baillie, H. Zhu, J.K. Yao, V.L. Nimgaonkar, et al. Impaired plasmalogens in patients with schizophrenia. Psychiatry Res, 198 (3) (2012), pp. 347-352.
[103]
A.M. Bams-Mengerink, C.B.L.M. Majoie, M. Duran, R.J.A. Wanders, J. Van Hove, C.D. Scheurer, et al. MRI of the brain and cervical spinal cord in rhizomelic chondrodysplasia punctata. Neurology, 66 (6) (2006), pp. 798-803.
[104]
D.B. Goodenowe, L.L. Cook, J. Liu, Y. Lu, D.A. Jayasinghe, P.W. Ahiahonu, et al. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. J Lipid Res, 48 (11) (2007), pp. 2485-2498.
[105]
K.M. Wynalda, R.C. Murphy. Low-concentration ozone reacts with plasmalogen glycerophosphoethanolamine lipids in lung surfactant. Chem Res Toxicol, 23 (1) (2010), pp. 108-117.
[106]
J. Guan, A. MacGibbon, R. Zhang, D.M. Elliffe, S. Moon, D.X. Liu. Supplementation of complex milk lipid concentrate (CMLc) improved the memory of aged rats. Nutr Neurosci, 18 (1) (2015), pp. 22-29.
[107]
N.B. Boyle, L. Dye, K. Arkbåge, L. Thorell, P. Frederiksen, F. Croden, et al. Effects of milk-based phospholipids on cognitive performance and subjective responses to psychosocial stress: a randomized, double-blind, placebo-controlled trial in high-perfectionist men. Nutrition, 57 (2019), pp. 183-193.
[108]
A. Kato-Kataoka, M. Sakai, R. Ebina, C. Nonaka, T. Asano, T. Miyamori. Soybean-derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. J Clin Biochem Nutr, 47 (3) (2010), pp. 246-255.
[109]
Y. Richter, Y. Herzog, Y. Lifshitz, R. Hayun, S. Zchut. The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study. Clin Interv Aging, 8 (2013), pp. 557-563.
[110]
S. Schreiber, O. Kampf-Sherf, M. Gorfine, D. Kelly, Y. Oppenheim, B. Lerer. An open trial of plant-source derived phosphatydilserine for treatment of age-related cognitive decline. Isr J Psychiatry Relat Sci, 37 (4) (2000), pp. 302-307.
[111]
T. Cenacchi, T. Bertoldin, C. Farina, M.G. Fiori, G. Crepaldi, C.F. Azzini, et al. Cognitive decline in the elderly: a double-blind, placebo-controlled multicenter study on efficacy of phosphatidylserine administration. Aging, 5 (2) (1993), pp. 123-133.
[112]
P.J. Delwaide, A.M. Gyselynck-Mambourg, A. Hurlet, M. Ylieff. Double-blind randomized controlled study of phosphatidylserine in senile demented patients. Acta Neurol Scand, 73 (2) (1986), pp. 136-140.
[113]
V. Vakhapova, T. Cohen, Y. Richter, Y. Herzog, A.D. Korczyn. Phosphatidylserine containing ω-3 fatty acids may improve memory abilities in non-demented elderly with memory complaints: a double-blind placebo-controlled trial. Dement Geriatr Cogn Disord, 29 (5) (2010), pp. 467-474.
[114]
V. Vakhapova, T. Cohen, Y. Richter, Y. Herzog, Y. Kam, A.D. Korczyn. Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in nondemented elderly individuals with memory complaints: results from an open-label extension study. Dement Geriatr Cogn Disord, 38 (1-2) (2014), pp. 39-45.
[115]
T. Fujino, T. Yamada, T. Asada, Y. Tsuboi, C. Wakana, S. Mawatari, et al. Efficacy and blood plasmalogen changes by oral administration of plasmalogen in patients with mild Alzheimer’s disease and mild cognitive impairment: a multicenter, randomized, double-blind, placebo-controlled trial. EBioMedicine, 17 (2017), pp. 199-205.
[116]
H. Watanabe, M. Okawara, Y. Matahira, T. Mano, T. Wada, N. Suzuki, et al. The impact of ascidian (halocynthia roretzi)-derived plasmalogen on cognitive function in healthy humans: a randomized, double-blind, placebo-controlled trial. J Oleo Sci, 69 (12) (2020), pp. 1597-1607.
[117]
F. Amenta, L. Parnetti, V. Gallai, A. Wallin. Treatment of cognitive dysfunction associated with Alzheimer’s disease with cholinergic precursors. Ineffective treatments or inappropriate approaches?. Mech Ageing Dev, 122 (16) (2001), pp. 2025-2040.
[118]
S.Y. Lim, H. Suzuki. Dietary phosphatidylcholine improves maze-learning performance in adult mice. J Med Food, 11 (1) (2008), pp. 86-90.
[119]
T. Kanno, Y. Jin, T. Nishizaki. DL-/PO-phosphatidylcholine restores restraint stress-induced depression-related behaviors and spatial memory impairment. Behav Pharmacol, 25 (5-6) (2014), pp. 575-581.
[120]
T.H. Crook, J. Tinklenberg, J. Yesavage, W. Petrie, M.G. Nunzi, D.C. Massari. Effects of phosphatidylserine in age-associated memory impairment. Neurology, 41 (5) (1991), pp. 644-649.
[121]
S.A. Cohen, W.E. Müller. Age- related alterations of NMDA-receptor properties in the mouse forebrain: partial restoration by chronic phosphatidylserine treatment. Brain Res, 584 (1-2) (1992), pp. 174-180.
[122]
M.G. Nunzi, F. Milan, D. Guidolin, G. Toffano. Dendritic spine loss in hippocampus of aged rats. Effect of brain phosphatidylserine administration. Neurobiol Aging, 8 (6) (1987), pp. 501-510.
[123]
H.C. Chaung, C.D. Chang, P.H. Chen, C.J. Chang, S.H. Liu, C.C. Chen. Docosahexaenoic acid and phosphatidylserine improves the antioxidant activities in vitro and in vivo and cognitive functions of the developing brain. Food Chem, 138 (1) (2013), pp. 342-347.
[124]
C.L. Taylor. Letter regarding phosphatidylserine and cognitive dysfunction and dementia. US Food and Drug Administration, Bethesda (2003).
[125]
M. Kingsley. Effects of phosphatidylserine supplementation on exercising humans. Sports Med, 36 (8) (2006), pp. 657-669.
[126]
S. Mao, Z. Zhang, X. Ma, H. Tian, F. Lu, Y. Liu. Efficient secretion expression of phospholipase D in Bacillus subtilis and its application in synthesis of phosphatidylserine by enzyme immobilization. Int J Biol Macromol, 169 (2021), pp. 282-289.
[127]
S. Cho. GRAS Notice 637: GRAS notice for phosphatidylserine derived soy lecithin. NutraSource Inc., Clarksville (2016).
[128]
S. Wallner, G. Schmitz. Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids, 164 (6) (2011), pp. 573-589.
[129]
J.M. Dean, I.J. Lodhi. Structural and functional roles of ether lipids. Protein Cell, 9 (2) (2018), pp. 196-206.
[130]
Y. Zou, W.S. Henry, E.L. Ricq, E.T. Graham, V.V. Phadnis, P. Maretich, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature, 585 (7826) (2020), pp. 603-608.
[131]
F. Ali, M.S. Hossain, S. Sejimo, K. Akashi. Plasmalogens inhibit endocytosis of toll-like receptor 4 to attenuate the inflammatory signal in microglial cells. Mol Neurobiol, 56 (5) (2019), pp. 3404-3419.
[132]
J.E. Vance, D.E. Vance. Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol, 82 (1) (2004), pp. 113-128.
[133]
S. Yamashita, M. Hashimoto, A.M. Haque, K. Nakagawa, M. Kinoshita, O. Shido, et al. Oral administration of ethanolamine glycerophospholipid containing a high level of plasmalogen improves memory impairment in amyloid β-infused rats. Lipids, 52 (7) (2017), pp. 575-585.
[134]
H. Che, M. Zhou, T. Zhang, L. Zhang, L. Ding, T. Yanagita, et al. EPA enriched ethanolamine plasmalogens significantly improve cognition of Alzheimer’s disease mouse model by suppressing β-amyloid generation. Food Funct, 41 (2018), pp. 9-18.
[135]
H. Todt, F. Dorninger, P.J. Rothauer, C.M. Fischer, M. Schranz, B. Bruegger, et al. Oral batyl alcohol supplementation rescues decreased cardiac conduction in ether phospholipid-deficient mice. J Inherit Metab Dis, 43 (5) (2020), pp. 1046-1055.
[136]
L. Grégoire, T. Smith, V. Senanayake, A. Mochizuki, E. Miville-Godbout, D. Goodenowe, et al. Plasmalogen precursor analog treatment reduces levodopa-induced dyskinesias in parkinsonian monkeys. Behav Brain Res, 286 (2015), pp. 328-337.
[137]
Y. Liu, P. Cong, T. Zhang, R. Wang, X. Wang, J. Liu, et al. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol, 43 (2021), p. 102002.
[138]
H. Che, Q. Li, T. Zhang, L. Ding, L. Zhang, H. Shi, et al. A comparative study of EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine on Aβ42 induced cognitive deficiency in a rat model of Alzheimer’s disease. Food Funct, 9 (5) (2018), pp. 3008-3017.
[139]
W. Fallatah, T. Smith, W. Cui, D. Jayasinghe, E. Di Pietro, S.A. Ritchie, et al. Oral administration of a synthetic vinyl-ether plasmalogen normalizes open field activity in a mouse model of rhizomelic chondrodysplasia punctata. Dis Model Mech, 13 (1) (2019), p. dmm042499.
[140]
J.B. Strachan, B. Dyett, S. Chan, B. McDonald, R. Vlahos, C. Valery, et al. A promising new oral delivery mode for insulin using lipid-filled enteric-coated capsules. Biomater Adv, 148 (2023), p. 213368.
AI Summary AI Mindmap
PDF(1219 KB)

Accesses

Citations

Detail

Sections
Recommended

/