Therapeutic Characterization of 131I-Labeled Humanized Anti-B7-H3 Antibodies for Radioimmunotherapy for Glioblastoma

Fengqing Fu, Meng Zheng, Shandong Zhao, Yan Wang, Minzhou Huang, Hanqing Chen, Ziyi Huang, Kaijie Zhang, Liyan Miao, Xueguang Zhang

Engineering ›› 2023, Vol. 30 ›› Issue (11) : 190-202.

PDF(5100 KB)
PDF(5100 KB)
Engineering ›› 2023, Vol. 30 ›› Issue (11) : 190-202. DOI: 10.1016/j.eng.2023.05.011
Research
Article

Therapeutic Characterization of 131I-Labeled Humanized Anti-B7-H3 Antibodies for Radioimmunotherapy for Glioblastoma

Author information +
History +

Abstract

B7 homolog 3 (B7-H3) has attracted much attention in glioblastoma (GBM) radioimmunotherapy (RIT) due to its abnormally high expression on tumor cells. In this study, we report that two specific humanized anti-human B7-H3 antibodies (hu4G4 and hu4H12) derived from mouse anti-human B7-H3 antibodies that were generated by computer-aided design and exclusively recognize membrane expression of B7-H3 by human glioma cells. Hu4G4 and hu4H12 were radiolabeled with 89Zr for RIT antibody screening. Micro-positron emission tomography (PET) imaging, biodistribution and pharmacokinetic (PK) analyses of 89Zr-labeled antibodies were performed in U87-xenografted models. 125I labelling of the antibodies for single-photon emission computed tomography (SPECT) imaging was also used to investigate the biological behavior of the antibodies in vivo. Furthermore, the pharmacodynamic (PD) of the 131I-labeled antibodies were evaluated in U87-xenografted mice and GL261 Red-FLuc-B7-H3 in situ glioma tumor models. Micro-PET imaging and biodistribution analysis with a gamma counter showed that 89Zr-deferoxamine (DFO)-hu4G4 had higher tumor targeting performance with lower liver uptake than 89Zr-DFO-(hu4H12, immunoglobulin G (IgG)). The biodistribution results of 125I-SPECT imaging were similar to those of 89Zr-PET imaging, though the biodistribution in long bone joints and the thyroid varied. The PD analysis results indicated that 131I-hu4G4 had an excellent therapeutic effect and high safety with no apparent toxicity. Interestingly, 131I-hu4G4 improved the tumor vasculature in tissues with higher expression of collagen type IV and platelet-derived growth factor receptor β (PDGFR-β) compared with control treatment, as determined by immunofluorescence (IF), which contributed to inhibiting tumor growth. Taken together, our data indicate that hu4G4 exhibits good tumor targeting and specificity, achieves low nonspecific concentrations in normal tissues, and has acceptable PK characteristics. 131I-hu4G4 also exerts effective antitumor effects with an ideal safety profile. Therefore, we expect hu4G4 to be an excellent antibody for the development of GBM RIT.

Graphical abstract

Keywords

B7-H3 / Radioimmunotherapy / Glioblastoma / Pharmacokinetics / Pharmacodynamics

Cite this article

Download citation ▾
Fengqing Fu, Meng Zheng, Shandong Zhao, Yan Wang, Minzhou Huang, Hanqing Chen, Ziyi Huang, Kaijie Zhang, Liyan Miao, Xueguang Zhang. Therapeutic Characterization of 131I-Labeled Humanized Anti-B7-H3 Antibodies for Radioimmunotherapy for Glioblastoma. Engineering, 2023, 30(11): 190‒202 https://doi.org/10.1016/j.eng.2023.05.011

References

[1]
L.E. Gaspar, B.J. Fisher, D.R. Macdonald, D.V. Leber, E.C. Halperin, S.C. Schold, et al.. Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int J Radiat Oncol Biol Phys, 24 (1) ( 1992), pp. 55-57
[2]
Q.T. Ostrom, N. Patil, G. Cioffi, K. Waite, C. Kruchko, J.S. Barnholtz-Sloan. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro-oncol, 22 (12 Suppl 2) ( 2020), pp. iv1-iv96 DOI: 10.1093/neuonc/noaa200
[3]
D.A. Reardon, M.R. Zalutsky, D.D. Bigner. Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev Anticancer Ther, 7 (5) ( 2007), pp. 675-687 DOI: 10.1586/14737140.7.5.675
[4]
F.E. Bleeker, R.J. Molenaar, S. Leenstra. Recent advances in the molecular understanding of glioblastoma. J Neurooncol, 108 (1) ( 2012), pp. 11-27 DOI: 10.1007/s11060-011-0793-0
[5]
S. Xu, L. Tang, X. Li, F. Fan, Z. Liu. Immunotherapy for glioma: current management and future application. Cancer Lett, 476 ( 2020), pp. 1-12 DOI: 10.1155/2020/9683982
[6]
S.M. Larson, J.A. Carrasquillo, N.K.V. Cheung, O.W. Press. Radioimmunotherapy of human tumours. Nat Rev Cancer, 15 (6) ( 2015), pp. 347-360 DOI: 10.1038/nrc3925
[7]
J.P. Pouget, I. Navarro-Teulon, M. Bardiès, N. Chouin, G. Cartron, A. Pèlegrin, et al.. Clinical radioimmunotherapy—the role of radiobiology. Nat Rev Clin Oncol, 8 (12) ( 2011), pp. 720-734 DOI: 10.1038/nrclinonc.2011.160
[8]
D.A. Bischof. The role of nuclear medicine in the treatment of non-Hodgkin’s lymphoma (NHL). Leuk Lymphoma, 44 (Suppl 4) ( 2003), pp. S29-S36
[9]
R. Yudistiro, H. Hanaoka, N. Katsumata, A. Yamaguchi, Y. Tsushima. Bevacizumab radioimmunotherapy (RIT) with accelerated blood clearance using the avidin chase. Mol Pharm, 15 (6) ( 2018), pp. 2165-2173 DOI: 10.1021/acs.molpharmaceut.8b00027
[10]
A. Sugyo, A.B. Tsuji, H. Sudo, M. Okada, M. Koizumi, H. Satoh, et al.. Evaluation of efficacy of radioimmunotherapy with 90Y-labeled fully human anti-transferrin receptor monoclonal antibody in pancreatic cancer mouse models. PLoS One, 10 (4) ( 2015), Article e0123761 DOI: 10.1371/journal.pone.0123761
[11]
K. Fujiwara, K. Koyama, K. Suga, M. Ikemura, Y. Saito, A. Hino, et al.. 90Y-labeled anti-ROBO1 monoclonal antibody exhibits antitumor activity against small cell lung cancer xenografts. PLoS One, 10 (5) ( 2015), Article e0125468 DOI: 10.1371/journal.pone.0125468
[12]
K. Herrmann, M. Schwaiger, J.S. Lewis, S.B. Solomon, B.J. McNeil, M. Baumann, et al.. Radiotheranostics: a roadmap for future development. Lancet Oncol, 21 (3) ( 2020), pp. e146-e156
[13]
K.A. Hofmeyer, A. Ray, X. Zang. The contrasting role of B7-H3. Proc Natl Acad Sci USA, 105 (30) ( 2008), pp. 10277-10278 DOI: 10.1073/pnas.0805458105
[14]
S. Seaman, J. Stevens, M.Y. Yang, D. Logsdon, C. Graff-Cherry, C.B. St. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell, 11 (6) ( 2007), pp. 539-554
[15]
C. Zhong, B. Tao, Y. Chen, Z. Guo, X. Yang, L. Peng, et al.. B7-H 3 regulates glioma growth and cell invasion through a JAK2/STAT3/Slug-dependent signaling pathway. OncoTargets Ther, 13 ( 2020), pp. 2215-2224 DOI: 10.2147/ott.s237841
[16]
Z. Wang, Z. Wang, C. Zhang, X. Liu, G. Li, S. Liu, et al.. Genetic and clinical characterization of B7-H 3 (CD276) expression and epigenetic regulation in diffuse brain glioma. Cancer Sci, 109 (9) ( 2018), pp. 2697-2705 DOI: 10.1111/cas.13744
[17]
C.M. Jackson, J. Choi, M. Lim. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol, 20 (9) ( 2019), pp. 1100-1109 DOI: 10.1038/s41590-019-0433-y
[18]
H. Kaplon, M. Muralidharan, Z. Schneider, J.M. Reichert. Antibodies to watch in 2020. MAbs, 12 (1) ( 2020), Article 1703531
[19]
K. Kramer, B.H. Kushner, S. Modak, N. Pandit-Taskar, P. Smith-Jones, P. Zanzonico, et al.. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol, 97 (3) ( 2010), pp. 409-418 DOI: 10.1007/s11060-009-0038-7
[20]
Y. Wang, D. Pan, C. Huang, B. Chen, M. Li, S. Zhou, et al.. Dose escalation PET imaging for safety and effective therapy dose optimization of a bispecific antibody. MAbs, 12 (1) ( 2020), Article 1748322
[21]
E.B. Ehlerding, S. Lacognata, D. Jiang, C.A. Ferreira, S. Goel, R. Hernandez, et al.. Targeting angiogenesis for radioimmunotherapy with a 177Lu-labeled antibody. Eur J Nucl Med Mol Imaging, 45 (1) ( 2018), pp. 123-131 DOI: 10.1007/s00259-017-3793-2
[22]
E. Lopci, A. Chiti, M.R. Castellani, G. Pepe, L. Antunovic, S. Fanti, et al.. Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging, 38 (Suppl 1) ( 2011), pp. S28-S40
[23]
M.G. Stabin, R.B. Sparks, E. Crowe. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med, 46 (6) ( 2005), pp. 1023-1027
[24]
K.M. Tully, S. Tendler, L.M. Carter, S.K. Sharma, Z.V. Samuels, K. Mandleywala, et al.. Radioimmunotherapy targeting delta-like ligand 3 in small cell lung cancer exhibits antitumor efficacy with low toxicity. Clin Cancer Res, 28 (7) ( 2022), pp. 1391-1401 DOI: 10.1158/1078-0432.ccr-21-1533
[25]
Fu F, Gao J, Chen H, Wang W, Sun J, Zhang X et al. Downregulated miR-339-5p leads to overexpression of B7-H3 on glioma with tumor progression and invasion. Int J Biol Res. In press.
[26]
S. Modak, K. Kramer, S.H. Gultekin, H.F. Guo, N.K. Cheung. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res, 61 (10) ( 2001), pp. 4048-4054
[27]
D. Lemke, P.N. Pfenning, F. Sahm, A.C. Klein, T. Kempf, U. Warnken, et al.. Costimulatory protein 4IgB7H 3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin Cancer Res, 18 (1) ( 2012), pp. 105-117
[28]
V. Vassileva, V. Rajkumar, M. Mazzantini, M. Robson, A. Badar, S. Sharma, et al.. Significant therapeutic efficacy with combined radioimmunotherapy and cetuximab in preclinical models of colorectal cancer. J Nucl Med, 56 (8) ( 2015), pp. 1239-1245 DOI: 10.2967/jnumed.115.157362
[29]
I.J.G. Burvenich, S. Parakh, F.T. Lee, N. Guo, Z. Liu, H.K. Gan, et al.. Molecular imaging of T cell co-regulator factor B7-H 3 with 89Zr-DS-5573a. Theranostics, 8 (15) ( 2018), pp. 4199-4209
[30]
A.M. Wu. Engineered antibodies for molecular imaging of cancer. Methods, 65 (1) ( 2014), pp. 139-147
[31]
J.A. O’Donoghue, M. Bardiès, T.E. Wheldon. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med, 36 (10) ( 1995), pp. 1902-1909
[32]
M.N. Gaze, R.J. Mairs, S.M. Boyack, T.E. Wheldon, A. Barrett. 131I-meta-iodobenzylguanidine therapy in neuroblastoma spheroids of different sizes. Br J Cancer, 66 (6) ( 1992), pp. 1048-1052 DOI: 10.1038/bjc.1992.408
[33]
A. Almuhaideb, N. Papathanasiou, J. Bomanji. 18F-FDG PET/CT imaging in oncology. Ann Saudi Med, 31 (1) ( 2011), pp. 3-13 DOI: 10.4103/0256-4947.75771
[34]
F. Klug, H. Prakash, P.E. Huber, T. Seibel, N. Bender, N. Halama, et al.. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell, 24 (5) ( 2013), pp. 589-602
[35]
G. Wang, Z. Wu, Y. Wang, X. Li, G. Zhang, J. Hou. Therapy to target renal cell carcinoma using 131I-labeled B7-H3 monoclonal antibody. Oncotarget, 7 (17) ( 2016), pp. 24888-24898 DOI: 10.18632/oncotarget.8550
[36]
Y. Matsumura, H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 46 (12 Pt 1) ( 1986), pp. 6387-6392
[37]
H. Maeda, Y. Matsumura. EPR effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv Drug Deliv Rev, 63 (3) ( 2011), pp. 129-130
[38]
J.R. Oh, B.C. Ahn. False-positive uptake on radioiodine whole-body scintigraphy: physiologic and pathologic variants unrelated to thyroid cancer. Am J Nucl Med Mol Imaging, 2 (3) ( 2012), pp. 362-385 DOI: 10.4163/kjn.2012.45.4.362
[39]
Z. Liu, M. Xing. Induction of sodium/iodide symporter (NIS) expression and radioiodine uptake in non-thyroid cancer cells. PLoS One, 7 (2) ( 2012), Article e31729 DOI: 10.1371/journal.pone.0031729
[40]
R. Huang, Z. Zhao, X. Ma, S. Li, R. Gong, A. Kuang. Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter. Cancer Gene Ther, 18 (2) ( 2011), pp. 144-152 DOI: 10.1038/cgt.2010.66
Funding
the National Natural Science Foundation of China(31320103918, 82104318); Key Research and Development Program of Jiangsu Province(BE2021644); the Jiangsu Innovative and Entrepreneurial Talent Programme(JSSCBS20211568); the Science and Technology Plan of Suzhou(SKJYD2021161, SKY2022046); Key Project of Jiangsu Provincial Health Commission(zd2021050); the Project of State Key Laboratory of Radiation Medicine and Protection, Soochow University(GZK1202203)
AI Summary AI Mindmap
PDF(5100 KB)

Accesses

Citations

Detail

Sections
Recommended

/