An Ultracompact Spoof Surface Plasmon Sensing System for Adaptive and Accurate Detection of Gas Using a Smartphone

Xuanru Zhang, Jia Wen Zhu, Tie Jun Cui

Engineering ›› 2024, Vol. 35 ›› Issue (4) : 86-94.

PDF(2474 KB)
PDF(2474 KB)
Engineering ›› 2024, Vol. 35 ›› Issue (4) : 86-94. DOI: 10.1016/j.eng.2023.05.013
Research
Article

An Ultracompact Spoof Surface Plasmon Sensing System for Adaptive and Accurate Detection of Gas Using a Smartphone

Author information +
History +

Abstract

Resonantly enhanced dielectric sensing has superior sensitivity and accuracy because the signal is measured from relative resonance shifts that are immune to signal fluctuations. For applications in the Internet of Things (IoT), accurate detection of resonance frequency shifts using a compact circuit is in high demand. We proposed an ultracompact integrated sensing system that merges a spoof surface plasmon resonance sensor with signal detection, processing, and wireless communication. A software-defined scheme was developed to track the resonance shift, which minimized the hardware circuit and made the detection adaptive to the target resonance. A microwave spoof surface plasmon resonator was designed to enhance sensitivity and resonance intensity. The integrated sensing system was constructed on a printed circuit board with dimensions of 1.8 cm × 1.2 cm and connected to a smartphone wirelessly through Bluetooth, working in both frequency scanning mode and resonance tracking mode and achieving a signal-to-noise ratio of 69 dB in acetone vapor sensing. This study provides an ultracompact, accurate, adaptive, sensitive, and wireless solution for resonant sensors in the IoT.

Graphical abstract

Keywords

Spoof surface plasmons / Internet of Things / Integrated sensing / Resonance tracking / Microwave sensing

Cite this article

Download citation ▾
Xuanru Zhang, Jia Wen Zhu, Tie Jun Cui. An Ultracompact Spoof Surface Plasmon Sensing System for Adaptive and Accurate Detection of Gas Using a Smartphone. Engineering, 2024, 35(4): 86‒94 https://doi.org/10.1016/j.eng.2023.05.013

References

[1]
R. Luttge. Microfabrication for industrial application. William Andrew, Oxford (2011).
[2]
S.A. Maier. Plasmonics: fundamentals and applications. Springer, New York City (2007).
[3]
W.L. Barnes, A. Dereux, T.W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424 (6950) (2003), pp. 824-830.
[4]
J. Homola, M. Piliarik. Surface plasmon resonance (SPR) sensors. Springer, New York City (2006).
[5]
X. Jiang, A.J. Qavi, S.H. Huang, L. Yang. Whispering-gallery sensors. Matter, 3 (2) (2020), pp. 371-392.
[6]
K.D. Heylman, N. Thakkar, E.H. Horak, S.C. Quillin, C. Cherqui, K.A. Knapper, et al. Optical microresonators as single-particle absorption spectrometers. Nat Photonics, 10 (12) (2016), pp. 788-795.
[7]
J. Su, A.F.G. Goldberg, B.M. Stoltz. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl, 5 (2016), e16001.
[8]
Y. Zhi, X.C. Yu, Q. Gong, L. Yang, Y.F. Xiao. Single nanoparticle detection using optical microcavities. Adv Mater, 29 (12) (2017), 1604920.
[9]
S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang, J. Wang, et al. A wireless body area sensor network based on stretchable passive tags. Nat Electron, 2 (8) (2019), pp. 361-368.
[10]
M. Dautta, M. Alshetaiwi, A. Escobar, F. Torres, N. Bernardo, P. Tseng. Multi-functional hydrogel-interlayer RF/NFC resonators as a versatile platform for passive and wireless biosensing. Adv Electron Mater, 6 (4) (2020), 1901311.
[11]
X. Zhang, W.Y. Cui, Y. Lei, X. Zheng, J. Zhang, T.J. Cui. Spoof localized surface plasmons for sensing applications. Adv Mater Technol, 6 (4) (2021), 2000863.
[12]
L.Y. Chen, B.C.K. Tee, A.L. Chortos, G. Schwartz, V. Tse, D.J. Lipomi, et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat Commun, 5 (2014), 5028.
[13]
R.A. Potyrailo, S. Go, D. Sexton, X. Li, N. Alkadi, A. Kolmakov, et al. Extraordinary performance of semiconducting metal oxide gas sensors using dielectric excitation. Nat Electron, 3 (5) (2020), pp. 280-289.
[14]
G. Allison, A.K. Sana, Y. Ogawa, H. Kato, K. Ueno, H. Misawa, et al. A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing. Nat Commun, 12 (2021), 6483.
[15]
A. Minopoli, B. Della Ventura, B. Lenyk, F. Gentile, J.A. Tanner, A. Offenhäusser, et al. Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nat Commun, 11 (2020), 6134.
[16]
M.A. Najeeb, Z. Ahmad, R.A. Shakoor. Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv Mater Interfaces, 5 (21) (2018), 1800969.
[17]
J. Liao, L. Yang. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light Sci Appl, 10 (2021), 32.
[18]
A. Čolaković, M. Hadžialić. Internet of Things (IoT): a review of enabling technologies, challenges, and open research issues. Comput Netw, 144 (2018), pp. 17-39.
[19]
J.B. Pendry, L. Martín-Moreno, F.J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305 (5685) (2004), pp. 847-848.
[20]
A.P. Hibbins, B.R. Evans, J.R. Sambles. Experimental verification of designer surface plasmons. Science, 308 (5722) (2005), pp. 670-672.
[21]
X. Shen, T.J. Cui, D. Martin-Cano, F.J. Garcia-Vidal. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA, 110 (1) (2013), pp. 40-45.
[22]
A. Pors, E. Moreno, L. Martin-Moreno, J.B. Pendry, F.J. Garcia-Vidal. Localized spoof plasmons arise while texturing closed surfaces. Phys Rev Lett, 108 (22) (2012), 223905.
[23]
P.A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F.J. Garcia-Vidal, et al. Magnetic localized surface plasmons. Phys Rev X, 4 (2) (2014), 021003.
[24]
X. Shen, T.J. Cui. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photonics Rev, 8 (1) (2014), pp. 137-145.
[25]
C.R. Williams, S.R. Andrews, S.A. Maier, A.I. Fernández-Domínguez, L. Martín-Moreno, F.J. García-Vidal. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics, 2 (3) (2008), pp. 175-179.
[26]
X. Zhang, T.J. Cui. Deep-subwavelength and high-Q trapped mode induced by symmetry-broken in toroidal plasmonic resonator. IEEE Trans Antennas Propag, 69 (4) (2021), pp. 2122-2129.
[27]
X. Tian, P.M. Lee, Y.J. Tan, T.L.Y. Wu, H. Yao, M. Zhang, et al. Wireless body sensor networks based on metamaterial textiles. Nat Electron, 2 (6) (2019), pp. 243-251.
[28]
Z. Li, X. Tian, C. Qiu, J.S. Ho. Metasurfaces for bioelectronics and healthcare. Nat Electron, 4 (6) (2021), pp. 382-391.
[29]
Y. Liu, K.D. Xu, J. Li, Y.J. Guo, A. Zhang, Q. Chen. Millimeter-wave E-plane waveguide bandpass filters based on spoof surface plasmon polaritons. IEEE Trans Microw Theory Tech, 70 (10) (2022), pp. 4399-4409.
[30]
X. Zhang, W.X. Tang, H.C. Zhang, J. Xu, G.D. Bai, J.F. Liu, et al. A spoof surface plasmon transmission line loaded with varactors and short-circuit stubs and its application in Wilkinson power dividers. Adv Mater Technol, 3 (6) (2018), 1800046.
[31]
Y.J. Guo, K.D. Xu, X. Deng, X. Cheng, Q. Chen. Millimeter-wave on-chip bandpass filter based on spoof surface plasmon polaritons. IEEE Electron Device Lett, 41 (8) (2020), pp. 1165-1168.
[32]
Y. Liang, H. Yu, G. Feng, A.A.A. Apriyana, X. Fu, T.J. Cui. An energy-efficient and low-crosstalk sub-THz I/O by surface plasmonic polariton interconnect in CMOS. IEEE Trans Microw Theory Tech, 65 (8) (2017), pp. 2762-2774.
[33]
Y.J. Zhou, Q.Y. Li, H.Z. Zhao, T.J. Cui. Gain-assisted active spoof plasmonic Fano resonance for high-resolution sensing of glucose aqueous solutions. Adv Mater Technol, 5 (1) (2020), 1900767.
[34]
V.G.M. Annamdas, C.K. Soh. Contactless load monitoring in near-field with surface localized spoof plasmons—a new breed of metamaterials for health of engineering structures. Sens Actuator A, 244 (2016), pp. 156-165.
[35]
Y.J. Guo, K.D. Xu, X. Deng. Tunable enhanced sensing of ferrite film using meander-shaped spoof surface plasmon polariton waveguide. Appl Phys Express, 12 (11) (2019), 115502.
[36]
X. Li, L. Liu, Z. Zhou, J. Shen, Y. Zhang, G. Han, et al. Highly sensitive and topologically robust multimode sensing on spoof plasmonic skyrmions. Adv Opt Mater, 10 (15) (2022), 2200331.
[37]
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529 (7587) (2016), pp. 509-514.
[38]
K. Kwon, J.U. Kim, Y. Deng, S.R. Krishnan, J. Choi, H. Jang, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat Electron, 4 (4) (2021), pp. 302-312.
[39]
E. Fratticcioli, M. Dionigi, R. Sorrentino. A simple and low-cost measurement system for the complex permittivity characterization of materials. IEEE Trans Instrum Meas, 53 (4) (2004), pp. 1071-1077.
[40]
O. Elhadidy, S. Shakib, K. Krenek, S. Palermo, K. Entesari. A wide-band fully-integrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system. IEEE Trans Circuits Syst I, 62 (8) (2015), pp. 1940-1949.
[41]
O. Elhadidy, M. Elkholy, A.A. Helmy, S. Palermo, K. Entesari. A CMOS fractional-N PLL-based microwave chemical sensor with 1.5% permittivity accuracy. IEEE Trans Microw Theory Tech, 61 (9) (2013), pp. 3402-3416.
[42]
A.A. Helmy, H.J. Jeon, Y.C. Lo, A.J. Larsson, R. Kulkarni, J. Kim, et al. A self-sustained CMOS microwave chemical sensor using a frequency synthesizer. IEEE J Solid-State Circuits, 47 (10) (2012), pp. 2467-2483.
[43]
R. St-Gelais, G. Mackey, J. Saunders, J. Zhou, A. Leblanc-Hotte, A. Poulin, et al. Gas sensing using polymer-functionalized deformable Fabry-Pérot interferometers. Sens Actuator B, 182 (2013), pp. 45-52.
[44]
S. Mohammadi, M.H. Zarifi. Differential microwave resonator sensor for real-time monitoring of volatile organic compounds. IEEE Sens J, 21 (5) (2020), pp. 6105-6114.
[45]
M.H. Zarifi, A. Sohrabi, P.M. Shaibani, M. Daneshmand, T. Thundat. Detection of volatile organic compounds using microwave sensors. IEEE Sens J, 15 (1) (2015), pp. 248-254.
[46]
C.V. Rumens, M.A. Ziai, K.E. Belsey, J.C. Batchelor, S.J. Holder. Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors. J Mater Chem C, 3 (39) (2015), pp. 10091-10098.
[47]
A. Rydosz, E. Maciak, K. Wincza, S. Gruszczynski. Microwave-based sensors with phthalocyanine films for acetone, ethanol and methanol detection. Sens Actuator B, 237 (2016), pp. 876-886.
[48]
W. Ge, S. Jiao, Z. Chang, X. He, Y. Li. Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets. ACS Appl Mater Interfaces, 12 (11) (2020), pp. 13200-13207.
[49]
S. Sun, L. Zhu. Wideband microstrip ring resonator bandpass filters under multiple resonances. IEEE Trans Microw Theory Tech, 55 (10) (2007), pp. 2176-2182.
[50]
R.A. Waldron. Perturbation theory of resonant cavities. Proc IEE Part C, 107 (12) (1960), pp. 272-274.
[51]
R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, et al. Laser phase and frequency stabilization using an optical resonator. Appl Phys B, 31 (1983), pp. 97-105.
[52]
E.D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization. Am J Phys, 69 (1) (2001), pp. 79-87.
[53]
B.P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, et al. LIGO: the laser interferometer gravitational-wave observatory. Rep Prog Phys, 72 (7) (2009), 076901.
[54]
H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A.S. Zibrov, et al. High-fidelity control and entanglement of Rydberg-atom qubits. Phys Rev Lett, 121 (12) (2018), 123603.
[55]
Q.X. Li, X. Zhang, L.X. Zhu, S.H. Yan, A.A. Jia, Y.K. Luo, et al. Intelligent and automatic laser frequency locking system using pattern recognition technology. Opt Lasers Eng, 126 (2020), 105881.
[56]
X. Guo, L. Zhang, J. Liu, L. Chen, L. Fan, G. Xu, et al. An automatic frequency stabilized laser with hertz-level linewidth. Opt Laser Technol, 145 (2022), 107498.
[57]
J.G. Ziegler, N.B. Nichols. Optimum settings for automatic controllers. Trans ASME, 64 (8) (1942), pp. 759-765.
[58]
J. Mocak, A.M. Bond, S. Mitchell, G. Scollary. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure Appl Chem, 69 (2) (1997), pp. 297-328.
[59]
D. Quesada-González, C. Stefani, I. González, A. de la Escosura-Muñiz, N. Domingo, P. Mutjé, et al. Signal enhancement on gold nanoparticle-based lateral flow tests using cellulose nanofibers. Biosens Bioelectron, 141 (2019), 111407.
[60]
G. Bailly, A. Harrabi, J. Rossignol, D. Stuerga, P. Pribetich. Microwave gas sensing with a microstrip interDigital capacitor: detection of NH3 with TiO2 nanoparticles. Sens Actuator B, 236 (2016), pp. 554-564.
[61]
P. Lienerth, S. Fall, P. Lévêque, U. Soysal, T. Heiser. Improving the selectivity to polar vapors of OFET-based sensors by using the transfer characteristics hysteresis response. Sens Actuator B, 225 (2016), pp. 90-95.
AI Summary AI Mindmap
PDF(2474 KB)

Accesses

Citations

Detail

Sections
Recommended

/