Transport in Nanoporous Media

Weiyao Zhu, Bin Pan, Zhen Chen, Wengang Bu, Qipeng Ma, Kai Liu, Ming Yue

Engineering ›› 2024, Vol. 32 ›› Issue (1) : 138-151.

PDF(2569 KB)
PDF(2569 KB)
Engineering ›› 2024, Vol. 32 ›› Issue (1) : 138-151. DOI: 10.1016/j.eng.2023.05.014
Research

Transport in Nanoporous Media

Author information +
History +

Abstract

Fluid flow at nanoscale is closely related to many areas in nature and technology (e.g., unconventional hydrocarbon recovery, carbon dioxide geo-storage, underground hydrocarbon storage, fuel cells, ocean desalination, and biomedicine). At nanoscale, interfacial forces dominate over bulk forces, and nonlinear effects are important, which significantly deviate from conventional theory. During the past decades, a series of experiments, theories, and simulations have been performed to investigate fluid flow at nanoscale, which has advanced our fundamental knowledge of this topic. However, a critical review is still lacking, which has seriously limited the basic understanding of this area. Therefore herein, we systematically review experimental, theoretical, and simulation works on single- and multi-phases fluid flow at nanoscale. We also clearly point out the current research gaps and future outlook. These insights will promote the significant development of nonlinear flow physics at nanoscale and will provide crucial guidance on the relevant areas.

Graphical abstract

Keywords

Transport in nanoporous media / Multi-phase fluid dynamics / Nonlinear flow mechanisms / Nonlinear flow conservation equations / Interfacial forces / Molecular dynamics simulation

Cite this article

Download citation ▾
Weiyao Zhu, Bin Pan, Zhen Chen, Wengang Bu, Qipeng Ma, Kai Liu, Ming Yue. Transport in Nanoporous Media. Engineering, 2024, 32(1): 138‒151 https://doi.org/10.1016/j.eng.2023.05.014

References

[1]
B. Pan, C.R. Clarkson, A. Younis, C. Song, C. Debuhr, A. Ghanizadeh, et al.. New methods to evaluate impacts of osmotic pressure and surfactant on fracturing fluid loss and effect of contact angle on spontaneous imbibition data scaling in unconventional reservoirs. Fuel, 328 ( 2022), Article 125328
[2]
B. Pan, C.R. Clarkson, C. Debuhr, A. Younis, C. Song, A. Ghanizadeh, et al.. Low-permeability reservoir sample wettability characterization at multiple scales: pore-, micro- and macro-contact angles. J Nat Gas Sci Eng, 95 ( 2021), Article 104229
[3]
Y. Gao, K. Wu, Z. Chen, T. Zhou, J. Li, D. Feng, et al.. Effect of wetting hysteresis on fluid flow in shale oil reservoirs. Energy Fuels, 35 (15) ( 2021), pp. 12075-12082
[4]
R. Li, Z. Chen, K. Wu, X. Hao, J. Xu. An analytical model for water-oil two-phase flow in inorganic nanopores in shale oil reservoirs. Petrol Sci, 18 (6) ( 2021), pp. 1776-1787
[5]
Y. Yang, K. Wang, L. Zhang, H. Sun, K. Zhang, J. Ma. Pore-scale simulation of shale oil flow based on pore network model. Fuel, 251 ( 2019), pp. 683-692
[6]
Y. Yang, J. Liu, J. Yao, J. Kou, Z. Li, T. Wu, et al.. Adsorption behaviors of shale oil in kerogen slit by molecular simulation. Chem Eng J, 387 ( 2020), Article 124054
[7]
J.O. Alvarez, D.S. Schechter. Wettability alteration and spontaneous imbibition in unconventional liquid reservoirs by surfactant additives. SPE Reserv Eval Eng, 20 (01) ( 2017), pp. 107-117
[8]
W. Zhu, Z. Chen, Z. Song, J. Wu, W. Li, M. Yue. Research progress in theories and technologies of shale gas development in China. J Univ Sci Technol Beijing, 43 ( 2021), pp. 1397-1412
[9]
H. Chu, X. Liao, Z. Chen, W.J.J. Lee. Rate-transient analysis of a constant-bottomhole-pressure multihorizontal well pad with a semianalytical single-phase method. SPE J, 25 (06) ( 2020), pp. 3280-3299
[10]
H. Chu, X. Liao, Z. Chen, X. Zhao, W. Liu, P. Dong. Transient pressure analysis of a horizontal well with multiple, arbitrarily shaped horizontal fractures. J Petrol Sci Eng, 180 ( 2019), pp. 631-642
[11]
J. Virkutyt, M. Sillanpää, P. Latostenmaa. Electrokinetic soil remediation-critical overview. Sci Total Environ, 289 (1-3) ( 2002), pp. 97-121
[12]
R. Aranda, H. Davarzani, S. Colombano, F. Laurent, H. Bertin. Experimental study of foam flow in highly permeable porous media for soil remediation. Transp Porous Media, 134 (1) ( 2020), pp. 231-247
[13]
X. Wang, L. Ren, T. Long, C. Geng, X. Tian. Migration and remediation of organic liquid pollutants in porous soils and sedimentary rocks: a review. Environ Chem Lett, 21 (1) ( 2023), pp. 479-496
[14]
B. Pan, Y. Li, H. Wang, F. Jones, S. Iglauer. CO2 and CH4 wettabilities of organic-rich shale. Energy Fuels, 32 (2) ( 2018), pp. 1914-1922
[15]
B. Pan, F. Jones, Z. Huang, Y. Yang, Y. Li, S.H. Hejazi, et al.. Methane (CH4) wettability of clay-coated quartz at reservoir conditions. Energy Fuels, 33 (2) ( 2019), pp. 788-795
[16]
B. Pan, X. Yin, Y. Ju, S. Iglauer. Underground hydrogen storage: influencing parameters and future outlook. Adv Colloid Interface Sci, 294 ( 2021), Article 102473
[17]
B. Pan, X. Yin, W. Zhu, Y. Yang, Y. Ju, Y. Yuan, et al.. Theoretical study of brine secondary imbibition in sandstone reservoirs: implications for H2, CH4, and CO2 geo-storage. Int J Hydrogen Energy, 47 (41) ( 2022), pp. 18058-18066
[18]
B. Pan, K. Liu, B. Ren, M. Zhang, Y. Ju, J. Gu, et al.. Impacts of relative permeability hysteresis, wettability, and injection/withdrawal schemes on underground hydrogen storage in saline aquifers. Fuel, 333 ( 2023), Article 126516
[19]
S. Iglauer, A. Paluszny, C.H. Pentland, M.J. Blunt. Residual CO2 imaged with X-ray micro-tomography. Geophys Res Lett, 38 (21) ( 2011), Article L21403
[20]
A. Rezaei, A. Hassanpouryouzband, I. Molnar, Z. Derikvand, R.S. Haszeldine, K. Edlmann. Relative permeability of hydrogen and aqueous brines in sandstones and carbonates at reservoir conditions. Geophys Res Lett, 49 (12) ( 2022), Article e2022GL099433
[21]
N. Heinemann, J. Alcalde, J.M. Miocic, S.J.T. Hangx, J. Kallmeyer, C. Ostertag-Henning, et al.. Enabling large-scale hydrogen storage in porous media—the scientific challenges. Energy Environ Sci, 14 (2) ( 2021), pp. 853-864
[22]
X. Jin, C. Chao, K. Edlmann, X. Fan. Understanding the interplay of capillary and viscous forces in CO2 core flooding experiments. J Hydrol, 606 ( 2022), Article 127411
[23]
R. Anderson, L. Zhang, Y. Ding, M. Blanco, X. Bi, D.P. Wilkinson. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells. J Power Sources, 195 (15) ( 2010), pp. 4531-4553
[24]
D.H. Jeon. Wettability in electrodes and its impact on the performance of lithium-ion batteries. Energy Storage Mater, 18 ( 2019), pp. 139-147
[25]
C. Lian, H. Su, C. Li, H. Liu, J. Wu. Non-negligible roles of pore size distribution on electroosmotic flow in nanoporous materials. ACS Nano, 13 (7) ( 2019), pp. 8185-8192
[26]
M. Cooley, A. Sarode, M. Hoore, D.A. Fedosov, S. Mitragotri, G.A. Sen. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale, 10 (32) ( 2018), pp. 15350-15364
[27]
K. Müller, D.A. Fedosov, G. Gompper.Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep, 4 ( 2014), p. 4871
[28]
M.A. Alkhadra, X. Su, M.E. Suss, H. Tian, E.N. Guyes, A.N. Shocron, et al.. Electrochemical methods for water purification, ion separations, and energy conversion. Chem Rev, 122 (16) ( 2022), pp. 13547-13635
[29]
A. Sood, A.D. Poletayev, D.A. Cogswell, P.M. Csernica, J.T. Mefford, D. Fraggedakis, et al.. Electrochemical ion insertion from the atomic to the device scale. Nat Rev Mater, 6 (9) ( 2021), pp. 847-867
[30]
M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser. Water desalination via capacitive deionization: what is it and what can we expect from it?. Energy Environ Sci, 8 (8) ( 2015), pp. 2296-2319
[31]
P.J.A. Kenis, R.F. Ismagilov, S. Takayama, G.M. Whitesides, S. Li, H.S. White. Fabrication inside microchannels using fluid flow. Acc Chem Res, 33 (12) ( 2000), pp. 841-847
[32]
S. Battat, D.A. Weitz, G.M. Whitesides. Nonlinear phenomena in microfluidics. Chem Rev, 122 (7) ( 2022), pp. 6921-6937
[33]
S. Iijima. Helical microtubules of graphitic carbon. Nature, 354 (6348) ( 1991), pp. 56-58
[34]
M. Majumder, N. Chopra, R. Andrews, B.J. Hinds. Enhanced flow in carbon nanotubes. Nature, 438 (7064) ( 2005), p. 44
[35]
A.I. Skoulidas, D.M. Ackerman, J.K. Johnson, D.S. Sholl. Rapid transport of gases in carbon nanotubes. Phys Rev Lett, 89 (18) ( 2002), Article 185901
[36]
J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, et al.. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312 (5776) ( 2006), pp. 1034-1037
[37]
A. Noy, H.G. Park, F. Fornasiero, J.K. Holt, C.P. Grigoropoulos, O. Bakajin. Nanofluidics in carbon nanotubes. Nano Today, 2 (6) ( 2007), pp. 22-29
[38]
M.A. Tofighy, T. Mohammadi. Nickel ions removal from water by two different morphologies of induced CNTs in mullite pore channels as adsorptive membrane. Ceram Int, 41 (4) ( 2015), pp. 5464-5472
[39]
Y. Wang, J. Zhu, H. Huang, H.H. Cho. Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms. J Membr Sci, 479 ( 2015), pp. 165-174
[40]
J. Zhong, Y. Zhao, C. Lu, Y. Xu, Z. Jin, F. Mostowfi, et al.. Nanoscale phase measurement for the shale challenge: multicomponent fluids in multiscale volumes. Langmuir, 34 (34) ( 2018), pp. 9927-9935
[41]
J. Zhong, S.H. Zandavi, H. Li, B. Bao, A.H. Persad, F. Mostowfi, et al.. Condensation in one-dimensional dead-end nanochannels. ACS Nano, 11 (1) ( 2017), pp. 304-313
[42]
D. Sinton. Energy: the microfluidic frontier. Lab Chip, 14 (17) ( 2014), pp. 3127-3134
[43]
T. Kong, H.C. Shum, D.A. Weitz. The fourth decade of microfluidics. Small, 16 (9) ( 2020), p. 2000070
[44]
G.M. Whitesides. The origins and the future of microfluidics. Nature, 442 (7101) ( 2006), pp. 368-373
[45]
H. Cui, Z.S. Li, S. Zhu. Flow characteristics of liquids in microtubes driven by a high pressure. Phys Fluids, 16 (5) ( 2004), pp. 1803-1810
[46]
C.H. Choi, K.J.A. Westin, K.S. Breuer. Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys Fluids, 15 (10) ( 2003), pp. 2897-2902
[47]
D. Lumma, A. Best, A. Gansen, F. Feuillebois, J.O. Rädler, O.I. Vinogradova. Flow profile near a wall measured by double-focus fluorescence cross-correlation. Phys Rev E, 67 (5) ( 2003), Article 056313
[48]
S. Jin, P. Huang, J. Park, J.Y. Yoo, K.S. Breuer. Near-surface velocimetry using evanescent wave illumination. Exp Fluids, 37 (6) ( 2004), pp. 825-833
[49]
R.G. Horn, O.I. Vinogradova, M.E. Mackay, N. Phan-Thien. Hydrodynamic slippage inferred from thin film drainage measurements in a solution of nonadsorbing polymer. J Chem Phys, 112 (14) ( 2000), pp. 6424-6433
[50]
W. Shen, F. Song, X. Hu, G. Zhu, W. Zhu.Experimental study on flow characteristics of gas transport in micro- and nanoscale pores. Sci Rep, 9 (1) ( 2019), p. 10196
[51]
M.E. Nordberg. Properties of some Vycor-brand glasses. J Am Ceram Soc, 27 (10) ( 1944), pp. 299-305
[52]
P. Debye, R.L. Cleland. Flow of liquid hydrocarbons in porous vycor. J Appl Phys, 30 (6) ( 1959), pp. 843-849
[53]
S. Gruener, D. Wallacher, S. Greulich, M. Busch, P. Huber. Hydraulic transport across hydrophilic and hydrophobic nanopores: flow experiments with water and n-hexane. Phys Rev E, 93 (1) ( 2016), Article 013102
[54]
X.Y. You, J.R. Zheng, Q. Jing. Effects of boundary slip and apparent viscosity on the stability of microchannel flow. Forsch Im Ingenieurwes, 71 ( 2007), pp. 99-106
[55]
X.F. Wang, W.Y. Zhu, Q.J. Deng, X.L. Zhang, L. Lou, Y. Gao. Micro circular tube flow mathematical model with the effect of van der Waals force. Appl Mech Mat, 448-453 ( 2014), pp. 975-981
[56]
J.A. Thomas, A.J.H. McGaughey. Reassessing fast water transport through carbon nanotubes. Nano Lett, 8 (9) ( 2008), pp. 2788-2793
[57]
K. Wu, Z. Chen, J. Li, X. Li, J. Xu, X. Dong. Wettability effect on nanoconfined water flow. Proc Natl Acad Sci USA, 114 (13) ( 2017), pp. 3358-3363
[58]
L. Zhang, K. Wu, Z. Chen, J. Li, X. Yu, S. Yang, et al.. Quasi-continuum water flow under nanoconfined conditions: coupling the effective viscosity and the slip length. Ind Eng Chem Res, 59 (46) ( 2020), pp. 20504-20514
[59]
X. Zhang, W. Zhu, Q. Cai, Q. Liu, X. Wang, Y. Lou. Analysis of weakly compressible fluid flow in nano/micro-size circular tubes considering solid wall force. J Univ Sci Technol Beijing, 36 ( 2014), pp. 569-575
[60]
X. Zhang, W. Zhu, Q. Cai, Y. Shi, X. Wu, T. Jin, et al.. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction. Phys Fluids, 30 (6) (2018), Article 062002
[61]
U. Heinbuch, J. Fischer. Liquid flow in pores: slip, no-slip, or multilayer sticking. Phys Rev A Gen Phys, 40 (2) ( 1989), pp. 1144-1146
[62]
P.A. Thompson, S.M. Troian. A general boundary condition for liquid flow at solid surfaces. Nature, 389 (6649) ( 1997), pp. 360-362
[63]
C. Davidson, X. Xuan. Electrokinetic energy conversion in slip nanochannels. J Power Sources, 179 (1) ( 2008), pp. 297-300
[64]
M. Jeong, Y. Kim, W. Zhou, W.Q. Tao, M.Y. Ha. Effects of surface wettability, roughness and moving wall velocity on the Couette flow in nano-channel using multi-scale hybrid method. Comput Fluids, 147 ( 2017), pp. 1-11
[65]
D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet. Water slippage versus contact angle: a quasiuniversal relationship. Phys Rev Lett, 101 (22) ( 2008), Article 226101
[66]
I. Hanasaki, A. Nakatani. Flow structure of water in carbon nanotubes: poiseuille type or plug-like?. J Chem Phys, 124 (14) ( 2006), Article 144708
[67]
S. Joseph, N.R. Aluru. Why are carbon nanotubes fast transporters of water?. Nano Lett, 8 (2) ( 2008), pp. 452-458
[68]
S. Wang, F. Javadpour, Q. Feng. Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel, 171 ( 2016), pp. 74-86
[69]
S. Wang, Q. Feng, F. Javadpour, Y.B. Yang. Breakdown of fast mass transport of methane through calcite nanopores. J Phys Chem C, 120 (26) ( 2016), pp. 14260-14269
[70]
K. Wu, Z. Chen, J. Li, J. Xu, K. Wang, S. Wang, et al.. Manipulating the flow of nanoconfined water by temperature stimulation. Angew Chem, 57 (28) ( 2018), pp. 8432-8437
[71]
S. Movahed, D. Li. Electrokinetic transport through nanochannels. Electrophoresis, 32 (11) ( 2011), pp. 1259-1267
[72]
W. Han, X. Chen. Nano-electrokinetic ion enrichment of highly viscous fluids in micro-nanochannel. Chem Eng Process, 143 ( 2019), Article 107626
[73]
W.L. Hsu, D.J.E. Harvie, M.R. Davidson, D.E. Dunstan, J. Hwang, H. Daiguji. Viscoelectric effects in nanochannel electrokinetics. J Phys Chem C, 121 (37) ( 2017), pp. 20517-20523
[74]
X. Mo, X. Hu. Electroviscous effect on pressure driven flow and related heat transfer in microchannels with surface chemical reaction. Int J Heat Mass Transf, 130 ( 2019), pp. 813-820
[75]
C. Li, Z. Liu, N. Qiao, Z. Feng, Z.Q. Tian. The electroviscous effect in nanochannels with overlapping electric double layers considering the height size effect on surface charge. Electrochim Acta, 419 ( 2022), Article 140421
[76]
M. Zhang, S. Zhan, Z. Jin. Recovery mechanisms of hydrocarbon mixtures in organic and inorganic nanopores during pressure drawdown and CO2 injection from molecular perspectives. Chem Eng J, 382 ( 2020), Article 122808
[77]
J. Li, C. Sun. Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies. Energy, 261 ( 2022), Article 125176
[78]
X. Hong, H. Yu, H. Xu, X. Wang, X. Jin, H. Wu, et al.. Competitive adsorption of asphaltene and n-heptane on quartz surfaces and its effect on crude oil transport through nanopores. J Mol Liq, 359 ( 2022), Article 119312
[79]
S. Brunauer, L.S. Deming, W.E. Deming, E. Teller. On a theory of the van der Waals adsorption of gases. J Am Chem Soc, 62 (7) ( 1940), pp. 1723-1732
[80]
S. Gregg, K. Sing.Adsorption, surface area and porosity. ( 2nd ed.), Academic Press, London ( 1982)
[81]
S. Rani, E. Padmanabhan, B.K. Prusty. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage. J Petrol Sci Eng, 175 ( 2019), pp. 634-643
[82]
T. Wu, D. Zhang.Impact of adsorption on gas transport in nanopores. Sci Rep, 6 ( 2016), p. 23629
[83]
A. Ali, T.T.B. Le, A. Striolo, D.R. Cole. Salt effects on the structure and dynamics of interfacial water on calcite probed by equilibrium molecular dynamics simulations. J Phys Chem C, 124 (45) ( 2020), pp. 24822-24836
[84]
M. Zhang, W. Li, Z. Jin. Structural properties of deprotonated naphthenic acids immersed in water in pristine and hydroxylated carbon nanopores from molecular perspectives. J Hazard Mater, 415 ( 2021), Article 125660
[85]
A. Han, G. Mondin, N.G. Hegelbach, N.F. de Rooij, U. Staufer. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force. J Colloid Interface Sci, 293 (1) ( 2006), pp. 151-157
[86]
B. Li, W. Zhu, Q. Ma, H. Li, D. Kong, Z. Song. Pore-scale visual investigation on the spontaneous imbibition of surfactant solution in oil-wet capillary tubes. Energy Sources Part A, 44 (2) ( 2022), pp. 3395-3405
[87]
P. Huber, S. Grüner, C. Schäfer, K. Knorr, A.V. Kityk. Rheology of liquids in nanopores: a study on the capillary rise of water, n-hexadecane and n-tetracosane in mesoporous silica. Eur Phys J Spec Top, 141 (1) ( 2007), pp. 101-105
[88]
S. Gruener, P. Huber. Spontaneous imbibition dynamics of an n-alkane in nanopores: evidence of meniscus freezing and monolayer sticking. Phys Rev Lett, 103 (17) ( 2009), Article 174501
[89]
S. Gruener, H.E. Hermes, B. Schillinger, S.U. Egelhaaf, P. Huber. Capillary rise dynamics of liquid hydrocarbons in mesoporous silica as explored by gravimetry, optical and neutron imaging: nano-rheology and determination of pore size distributions from the shape of imbibition fronts. Colloids Surf A, 496 ( 2016), pp. 13-27
[90]
B. Pan, C.R. Clarkson, M. Atwa, C. Debuhr, A. Ghanizadeh, V.I. Birss. Wetting dynamics of nanoliter water droplets in nanoporous media. J Colloid Interface Sci, 589 ( 2021), pp. 411-423
[91]
B. Pan, C.R. Clarkson, M. Atwa, X. Tong, C. Debuhr, A. Ghanizadeh, et al.. Spontaneous imbibition dynamics of liquids in partially-wet nanoporous media: experiment and theory. Transp Porous Media, 137 (3) ( 2021), pp. 555-574
[92]
Y. Gogotsi, J.A. Libera, A. Güvenç-Yazicioglu, C.M. Megaridis. In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett, 79 (7) ( 2001), pp. 1021-1023
[93]
M.P. Rossi, H. Ye, Y. Gogotsi, S. Babu, P. Ndungu, J.C. Bradley. Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett, 4 ( 2004), pp. 989-993
[94]
U. Anand, T. Ghosh, Z. Aabdin, S. Koneti, X. Xu, F. Holsteyns, et al.. Dynamics of thin precursor film in wetting of nanopatterned surfaces. Proc Natl Acad Sci USA, 118 (38) ( 2021), Article e2108074118
[95]
L. Fu, J. Zhai. Biomimetic stimuli-responsive nanochannels and their applications. Electrophoresis, 40 (16-17) ( 2019), pp. 2058-2074
[96]
S. Ferrati, D. Fine, J. You, E. De Rosa, L. Hudson, E. Zabre, et al.. Leveraging nanochannels for universal, zero-order drug delivery in vivo. J Control Release, 172 (3) ( 2013), pp. 1011-1019
[97]
S. Romano-Feinholz, A. Salazar-Ramiro, E. Muñoz-Sandoval, R. Magaña-Maldonado, N. Hernández Pedro, E. Rangel López, et al.. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma. Int J Nanomed, 12 ( 2017), pp. 6005-6026
[98]
K.L. Ly, P. Hu, L.H.P. Pham, X. Luo. Flow-assembled chitosan membranes in microfluidics: recent advances and applications. J Mater Chem B, 9 (15) ( 2021), pp. 3258-3283
[99]
A. Shakeri, N. Sun, M. Badv, T.F. Didar. Generating 2-dimensional concentration gradients of biomolecules using a simple microfluidic design. Biomicrofluidics, 11 (4) ( 2017), Article 044111
[100]
Y. Gu, V. Hegde, K.J.M. Bishop. Measurement and mitigation of free convection in microfluidic gradient generators. Lab Chip, 18 (22) ( 2018), pp. 3371-3378
[101]
L. Wang, E. Parsa, Y. Gao, J.T. Ok, K. Neeves, X. Yin, et al.. Experimental study and modeling of the effect of nanoconfinement on hydrocarbon phase behavior in unconventional reservoirs. In: Proceedingsof the SPE Western North American and Rocky Mountain Joint Meeting; 2014 Apr 17-18 ; Denver, CO, USA, OnePetro, Richardson ( 2014)
[102]
M. Akbarabadi, S. Saraji, M. Piri, D. Georgi, M. Delshad. Nano-scale experimental investigation of in-situ wettability and spontaneous imbibition in ultra-tight reservoir rocks. Adv Water Resour, 107 ( 2017), pp. 160-179
[103]
K. Xu, T. Liang, P. Zhu, P. Qi, J. Lu, C. Huh, et al.. A 2.5-D glass micromodel for investigation of multi-phase flow in porous media. Lab Chip, 17 (4) ( 2017), pp. 640-646
[104]
H.J. Deglint, C.R. Clarkson, A. Ghanizadeh, C. DeBuhr, J.M. Wood. Comparison of micro- and macro-wettability measurements and evaluation of micro-scale imbibition rates for unconventional reservoirs: implications for modeling multi-phase flow at the micro-scale. J Nat Gas Sci Eng, 62 ( 2019), pp. 38-67
[105]
J. Qiao, J. Zeng, S. Jiang, G. Yang, Y. Zhang, X. Feng, et al.. Investigation on the unsteady-state two-phase fluid transport in the nano-pore system of natural tight porous media. J Hydrol, 607 ( 2022), Article 127516
[106]
J.J. Sheng. Critical review of field EOR projects in shale and tight reservoirs. J Petrol Sci Eng, 159 ( 2017), pp. 654-665
[107]
Z. Zhou, X. Li, T.W. Teklu. A critical review of osmosis-associated imbibition in unconventional formations. Energies, 14 (4) ( 2021), p. 835
[108]
B. Pan, C.R. Clarkson, A. Younis, C. Song, C. Debuhr, A. Ghanizadeh, et al.. Fracturing fluid loss in unconventional reservoirs:evaluating the impact of osmotic pressure and surfactant and methods to upscale results. In:Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference (URTeC); 2021 Jul 26- 28 ; Houston, TX, USA, Houston: Society of Exploration Geophysicists ( 2021), p. 3773
[109]
W. Zhu, Y. Liu, Y. Shi, G. Zou, Q. Zhang, D. Kong. Effect of dynamic threshold pressure gradient on production performance in water-bearing tight gas reservoir. Adv GeoEnergy Res, 6 (4) ( 2022), pp. 286-295
[110]
W. Zhu, G. Zou, Y. Liu, W. Liu, B. Pan. The influence of movable water on the gas-phase threshold pressure gradient in tight gas reservoirs. Energies, 15 ( 2022), p. 5309
[111]
B. Jacob.Dynamics of fluids in porous media. ( 5th ed.), Dover Publications, New York City ( 2013)
[112]
W. Zhu. Study on the theory of multiphase mixed seepage in porous media. J Univ Sci Technol Beijing, 45 (5) ( 2023), pp. 833-839
[113]
X. Zhang. Percolatiton theory research of weekly compressible fluid flow considering wall-liquid interaction [dissertation]. University of Science and Technology Beijing, Beijing ( 2014) Chinese
[114]
X. Wang. Study on micro flow dynamics mechanisms and numerical simulation in porous media [dissertation]. University of Science and Technology Beijing, Beijing ( 2009) Chinese
[115]
L. Zhang, X. Yu, Z. Chen, J. Li, G. Hui, M. Yang, et al.. Capillary dynamics of confined water in nanopores: the impact of precursor films. Chem Eng J, 409 ( 2021), Article 128113
[116]
W. Tian, K. Wu, Z. Chen, L. Lai, Y. Gao, J. Li. Effect of dynamic contact angle on spontaneous capillary-liquid-liquid imbibition by molecular kinetic theory. SPE J, 26 (04) ( 2021), pp. 2324-2339
[117]
B. Liu, C. Qi, X. Zhao, G. Teng, L. Zhao, H. Zheng, et al.. Nanoscale two-phase flow of methane and water in shale inorganic matrix. J Phys Chem C, 122 (46) ( 2018), pp. 26671-26679
[118]
H. Xu, H. Yu, J. Fan, Y. Zhu, F. Wang, H. Wu. Two-phase transport characteristic of shale gas and water through hydrophilic and hydrophobic nanopores. Energy Fuels, 34 (4) ( 2020), pp. 4407-4420
[119]
L. Zhang, Q. Li, C. Liu, Y. Liu, S. Cai, S. Wang, et al.. Molecular insight of flow property for gas-water mixture (CO2/CH4-H2O) in shale organic matrix. Fuel, 288 ( 2021), Article 119720
[120]
L. Gong, J.H. Shi, B. Ding, Z.Q. Huang, S.Y. Sun, J. Yao. Molecular insight on competitive adsorption and diffusion characteristics of shale gas in water-bearing channels. Fuel, 278 ( 2020), Article 118406
[121]
S. Zhan, Y. Su, Z. Jin, M. Zhang, W. Wang, Y. Hao, et al.. Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling. Chem Eng J, 395 ( 2020), Article 125053
[122]
W. Zhang, Q. Feng, Z. Jin, X. Xing, S. Wang. Molecular simulation study of oil-water two-phase fluid transport in shale inorganic nanopores. Chem Eng Sci, 245 ( 2021), Article 116948
[123]
G. Galliero. Lennard-Jones fluid-fluid interfaces under shear. Phys Rev E, 81 (5) ( 2010), Article 056306
[124]
J. Koplik, J.R. Banavar. Slip, immiscibility, and boundary conditions at the liquid-liquid interface. Phys Rev Lett, 96 (4) ( 2006), Article 044505
[125]
T.A. Ho, Y. Wang. Enhancement of oil flow in shale nanopores by manipulating friction and viscosity. Phys Chem Chem Phys, 21 (24) ( 2019), pp. 12777-12786
[126]
J. Xu, S. Zhan, W. Wang, Y. Su, H. Wang. Molecular dynamics simulations of two-phase flow of n-alkanes with water in quartz nanopores. Chem Eng J, 430 ( 2022), Article 132800
[127]
E. Ghazimirsaeed, M. Madadelahi, M. Dizani, A. Shamloo. Secondary flows, mixing, and chemical reaction analysis of droplet-based flow inside serpentine microchannels with different cross sections. Langmuir, 37 (17) ( 2021), pp. 5118-5130
[128]
C. Jia, Z. Huang, K. Sepehrnoori, J. Yao. Modification of two-scale continuum model and numerical studies for carbonate matrix acidizing. J Petrol Sci Eng, 197 ( 2021), Article 107972
[129]
C. Jia, K. Sepehrnoori, Z. Huang, H. Zhang, J. Yao. Numerical studies and analysis on reactive flow in carbonate matrix acidizing. J Petrol Sci Eng, 201 ( 2021), Article 108487
[130]
C. Jia, K. Sepehrnoori, Z. Huang, J. Yao. Modeling and analysis of carbonate matrix acidizing using a new two-scale continuum model. SPE J, 26 (05) ( 2021), pp. 2570-2599
AI Summary AI Mindmap
PDF(2569 KB)

Accesses

Citations

Detail

Sections
Recommended

/