Pseudomonas Cyclic Lipopeptide Medpeptin: Biosynthesis and Modulation of Plant Immunity

Yi-Lin Gu, Jun-Zhou Li, Yan Li, Shen Cong, Jing Wang, Yi-Nan Ma, Hai-Lei Wei

Engineering ›› 2023, Vol. 28 ›› Issue (9) : 153-165.

PDF(4855 KB)
PDF(4855 KB)
Engineering ›› 2023, Vol. 28 ›› Issue (9) : 153-165. DOI: 10.1016/j.eng.2023.05.016
Research
Article

Pseudomonas Cyclic Lipopeptide Medpeptin: Biosynthesis and Modulation of Plant Immunity

Author information +
History +

Abstract

The multifunctional secondary metabolites known as cyclic lipopeptides (CLPs), which are produced by a large variety of bacteria, have become a key category of plant immunity elicitors. Pseudomonas-CLPs (Ps-CLPs) are extremely diverse in structure and biological activity. However, an understanding of CLP-plant structure-function interactions currently remains elusive. Here, we identify medpeptin, a novel CLP from Pseudomonas mediterranea that consists of 22 amino acids. Medpeptin is synthesized by a non-ribosomal peptide synthase (NRPS) gene cluster and regulated by a quorum-sensing system. Further research indicates that medpeptin does not exhibit antimicrobial activity; instead, it induces plant cell death immunity and confers resistance to bacterial infection. Comparative transcriptome analysis and virus-induced gene silencing (VIGS) reveal a set of immune signaling candidates involved in medpeptin perception. Silencing of a cell-wall leucine-rich repeat extensin protein (NbLRX3) or a receptor-like protein kinase (NbRLK25)—but not BAK1 or SGT1—compromises medpeptin-triggered cell death and resistance to pathogen infection in Nicotiana benthamiana. Our findings point to a noncanonical mechanism of CLP sensing and suggest perspectives for the development of plant disease resistance.

Graphical abstract

Keywords

Pseudomonas / Cyclic lipopeptide / Cell death / Leucine-rich repeat extension (LRX) / Medpeptin / Receptor-like kinase (RLK)

Cite this article

Download citation ▾
Yi-Lin Gu, Jun-Zhou Li, Yan Li, Shen Cong, Jing Wang, Yi-Nan Ma, Hai-Lei Wei. Pseudomonas Cyclic Lipopeptide Medpeptin: Biosynthesis and Modulation of Plant Immunity. Engineering, 2023, 28(9): 153‒165 https://doi.org/10.1016/j.eng.2023.05.016

References

[1]
D. Haas, G. Défago. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol, 3 (4) (2005), pp. 307-319. DOI: 10.1038/nrmicro1129
[2]
L. Girard, N. Geudens, B. Pauwels, M. Höfte, J.C. Martins, R. De Mot. Transporter gene-mediated typing for detection and genome mining of lipopeptide-producing Pseudomonas. Appl Environ Microbiol, 88 (2) (2022), p. e0186921
[3]
J.M. Raaijmakers, I. de Bruijn, M.J. de Kock. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact, 19 (7) (2006), pp. 699-710
[4]
F.E. Oni, Q. Esmaeel, J.T. Onyeka, R. Adeleke, C. Jacquard, C. Clement, et al. Pseudomonas lipopeptide-mediated biocontrol: chemotaxonomy and biological activity. Molecules, 27 (2) (2022), p. 372. DOI: 10.3390/molecules27020372
[5]
N. Geudens, J.C. Martins. Cyclic lipodepsipeptides from Pseudomonas spp.—biological swiss-army knives. Front Microbiol, 1867 (2018), p. 9
[6]
R. Finking, M.A. Marahiel. Biosynthesis of nonribosomal peptides. Annu Rev Microbiol, 58 (2004), pp. 453-488. DOI: 10.1146/annurev.micro.58.030603.123615
[7]
S. Götze, P. Stallforth. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep, 37 (1) (2020), pp. 29-54. DOI: 10.1039/c9np00022d
[8]
I. De Bruijn, J.M. Raaijmakers. Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. Appl Environ Microbiol, 75 (14) (2009), pp. 4753-4761
[9]
H. Gross, J.E. Loper. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep, 26 (11) (2009), pp. 1408-1446. DOI: 10.1039/b817075b
[10]
G. Licciardello, I. Bertani, L. Steindler, P. Bella, V. Venturi, V. Catara. Pseudomonas corrugata contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato pathogenicity and tobacco hypersensitivity response. FEMS Microbiol Ecol, 61 (2) (2007), pp. 222-234. DOI: 10.1111/j.1574-6941.2007.00338.x
[11]
G. Licciardello, C.P. Strano, I. Bertani, P. Bella, A. Fiore, V. Fogliano, et al. N-acyl-homoserine-lactone quorum sensing in tomato phytopathogenic Pseudomonas spp. is involved in the regulation of lipodepsipeptide production. J Biotechnol, 159 (4) (2012), pp. 274-282
[12]
G. Licciardello, A. Caruso, P. Bella, R. Gheleri, C.P. Strano, A. Anzalone, et al. The LuxR regulators PcoR and RfiA co-regulate antimicrobial peptide and alginate production in Pseudomonas corrugata. Front Microbiol, 9 (2018), p. 521
[13]
R.C. Hennessy, C.B.W. Phippen, K.F. Nielsen, S. Olsson, P. Stougaard. Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by Pseudomonas fluorescens strain In5 is regulated by the LuxR-type transcriptional regulator NunF. MicrobiologyOpen, 6 (6) (2017), p. e00516
[14]
R. Schellenberger, M. Touchard, C. Clément, F. Baillieul, S. Cordelier, J. Crouzet, et al. Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. Mol Plant Pathol, 20 (11) (2019), pp. 1602-1616. DOI: 10.1111/mpp.12857
[15]
B.P.M. Ngou, P. Ding, J.D.G. Jones. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell, 34 (5) (2022), pp. 1447-1478. DOI: 10.1093/plcell/koac041
[16]
H. Tran, A. Ficke, T. Asiimwe, M. Höfte, J.M. Raaijmakers. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol, 175 (4) (2007), pp. 731-742. DOI: 10.1111/j.1469-8137.2007.02138.x
[17]
J.Y. Jang, S.Y. Yang, Y.C. Kim, C.W. Lee, M.S. Park, J.C. Kim, et al. Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem, 61 (28) (2013), pp. 6786-6791. DOI: 10.1021/jf401218w
[18]
F.E. Olorunleke, G.K.H. Hua, N.P. Kieu, Z. Ma, M. Höfte.Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Environ Microbiol Rep, 7 (5) (2015), pp. 774-781. DOI: 10.1111/1758-2229.12310
[19]
Z. Ma, G.K.H. Hua, M. Ongena, M. Höfte. Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environ Microbiol Rep, 8 (5) (2016), pp. 896-904. DOI: 10.1111/1758-2229.12454
[20]
Z. Ma, M. Ongena, M. Höfte. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Rep, 36 (11) (2017), pp. 1731-1746. DOI: 10.1007/s00299-017-2187-z
[21]
M.C. Emanuele, A. Scaloni, P. Lavermicocca, N.S. Jacobellis, L. Camoni, D. Di Giorgio, et al. Corpeptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata. FEBS Lett, 433 (3) (1998), pp. 317-320
[22]
C.P. Strano, P. Bella, G. Licciardello, A. Fiore, A.R. Lo Piero, V. Fogliano, et al. Pseudomonas corrugata crpCDE is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato and in hypersensitive response in Nicotiana benthamiana. Mol Plant Pathol, 16 (5) (2015), pp. 495-506. DOI: 10.1111/mpp.12207
[23]
S. Ranf, N. Gisch, M. Schäffer, T. Illig, L. Westphal, Y.A. Knirel, et al. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol, 16 (4) (2015), pp. 426-433. DOI: 10.1038/ni.3124
[24]
A. Kutschera, C. Dawid, N. Gisch, C. Schmid, L. Raasch, T. Gerster, et al. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science, 364 (6436) (2019), pp. 178-181. DOI: 10.1126/science.aau1279
[25]
R. Schellenberger, J. Crouzet, A. Nickzad, L.J. Shu, A. Kutschera, T. Gerster, et al. Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate Arabidopsis innate immunity through two independent mechanisms. Proc Natl Acad Sci USA, 118 (39) (2021), Article e2101366118
[26]
J. Gronnier, C.M. Franck, M. Stegmann, T.A. DeFalco, A. Abarca, M. von Arx, et al. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. eLife, 11 (2022), p. e74162
[27]
Y. Gu, J. Wang, Z. Xia, H. Wei. Characterization of a versatile plant growth-promoting rhizobacterium Pseudomonas mediterranea strain S58. Microorganisms, 8 (3) (2020), p. 334. DOI: 10.3390/microorganisms8030334
[28]
E.O. King, M.K. Ward, D.E. Raney. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med, 44 (2) (1954), pp. 301-307
[29]
M. Herrero, V. de Lorenzo, K.N. Timmis. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol, 172 (11) (1990), pp. 6557-6567. DOI: 10.1128/jb.172.11.6557-6567.1990
[30]
H.L. Wei, S. Chakravarthy, J. Mathieu, T.C. Helmann, P. Stodghill, B. Swingle, et al. Pseudomonas syringae pv. tomato DC 3000 type III secretion effector polymutants reveal an interplay between HopAD1 and AvrPtoB. Cell Host Microbe, 17 (6) (2015), pp. 752-762
[31]
X. Li, G. Gu, W. Chen, L. Gao, X. Wu, L. Zhang. The outer membrane protein OprF and the sigma factor SigX regulate antibiotic production in Pseudomonas fluorescens 2P24. Microbiol Res, 206 (2018), pp. 159-167
[32]
M.A. Skinnider, C.W. Johnston, M. Gunabalasingam, N.J. Merwin, A.M. Kieliszek, R.J. MacLellan, et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat Commun, 11 (1) (2020), p. 6058
[33]
F. De la Torre, E. Gutiérrez-Beltrán, Y. Pareja-Jaime, S. Chakravarthy, G.B. Martin, O. del Pozo. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity. Plant Cell, 25 (7) (2013), pp. 2748-2764. DOI: 10.1105/tpc.113.113530
[34]
M. Zhang, Y.H. Chiang, T.Y. Toruño, D. Lee, M. Ma, X. Liang, et al. The MAP 4 kinase SIK1 ensures robust extracellular ROS burst and antibacterial immunity in plants. Cell Host Microbe, 24 (3) (2018), pp. 379-391.e5
[35]
B. Li, M.A. Ferreira, M. Huang, L.F. Camargos, X. Yu, R.M. Teixeira, et al. The receptor-like kinase NIK 1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity. Nat Commun, 10 (2019), p. 4996
[36]
S. Katiyar-Agarwal, R. Morgan, D. Dahlbeck, O. Borsani, A. Villegas Jr, J.K. Zhu, et al. A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA, 103 (47) (2006), pp. 18002-18007. DOI: 10.1073/pnas.0608258103
[37]
A. Bombarely, H.G. Rosli, J. Vrebalov, P. Moffett, L.A. Mueller, G.B. Martin. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact, 25 (12) (2012), pp. 1523-1530
[38]
M.I. Love, W. Huber, S. Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15 (12) (2014), p. 550
[39]
H. Heberle, G.V. Meirelles, F.R. da Silva, G.P. Telles, R. Minghim. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16 (1) (2015), p. 169
[40]
O. Thimm, O. Bläsing, Y. Gibon, A. Nagel, S. Meyer, P. Krüger, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J, 37 (6) (2004), pp. 914-939
[41]
D. Szklarczyk, A.L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 47 (D1) (2019), pp. D607-D613. DOI: 10.1093/nar/gky1131
[42]
N. Fernandez-Pozo, H.G. Rosli, G.B. Martin, L.A. Mueller. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant, 8 (3) (2015), pp. 486-488
[43]
Y. Liu, M. Schiff, S.P. Dinesh-Kumar. Virus-induced gene silencing in tomato. Plant J, 31 (6) (2002), pp. 777-786
[44]
M. Senthil-Kumar, K.S. Mysore. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc, 9 (7) (2014), pp. 1549-1562. DOI: 10.1038/nprot.2014.092
[45]
C.S. Oh, G.B. Martin. Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. J Biol Chem, 286 (16) (2011), pp. 14129-14136. DOI: 10.1074/jbc.M111.225086
[46]
A.C. Velásquez, S. Chakravarthy, G.B. Martin. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp, 28 (2009), p. e1292
[47]
J. Sikorski, H. Jahr, W. Wackernagel. The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Environ Microbiol, 3 (3) (2001), pp. 176-186
[48]
C.F. Michelsen, J. Watrous, M.A. Glaring, R. Kersten, N. Koyama, P.C. Dorrestein, et al. Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. MBio, 6 (2) (2015), pp. e00079-e115
[49]
M. Van Der Voort, H.J.G. Meijer, Y. Schmidt, J. Watrous, E. Dekkers, R. Mendes, et al. Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C 52 for antimicrobial compounds. Front Microbiol, 6 (2015), p. 693
[50]
Y. Yang, D.F. Klessig. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc Natl Acad Sci USA, 93 (25) (1996), pp. 14972-14977
[51]
O. Lorenzo, R. Piqueras, J.J. Sánchez-Serrano, R. Solano. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15 (1) (2003), pp. 165-178. DOI: 10.1105/tpc.007468
[52]
D. Wang, N. Amornsiripanitch, X. Dong. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog, 2 (11) (2006), p. e123. DOI: 10.1371/journal.ppat.0020123
[53]
B.A. Shinde, B.B. Dholakia, K. Hussain, A. Aharoni, A.P. Giri, A.C. Kamble. WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato, Solanum arcanum Peralta. Plant Biotechnol J, 16 (8) (2018), pp. 1502-1513. DOI: 10.1111/pbi.12892
[54]
L.A. Gish, S.E. Clark. The RLK/Pelle family of kinases. Plant J, 66 (1) (2011), pp. 117-127
[55]
J.P. Wang, Y.P. Xu, J.P. Munyampundu, T.Y. Liu, X.Z. Cai. Calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in tomato: genome-wide identification and functional analyses in disease resistance. Mol Genet Genomics, 291 (2) (2016), pp. 661-676. DOI: 10.1007/s00438-015-1137-0
[56]
A. Herger, K. Dünser, J. Kleine-Vehn, C. Ringli. Leucine-rich repeat extensin proteins and their role in cell wall sensing. Curr Biol, 29 (17) (2019), pp. R851-R858
[57]
H. Zhao, Y. Liu, L. Zhang. In silico and genetic analyses of cyclic lipopeptide synthetic gene clusters in Pseudomonas sp. 11K1. Front Microbiol, 10 (2019), p. 544
[58]
J. Pršić, M. Ongena. Elicitors of plant immunity triggered by beneficial bacteria. Front Plant Sci, 11 (2020), Article 594530
[59]
M.A. Mecchia, G. Santos-Fernandez, N.N. Duss, S.C. Somoza, A. Boisson-Dernier, V. Gagliardini, et al. RALF4/ 19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science, 358 (6370) (2017), pp. 1600-1603. DOI: 10.1126/science.aao5467
[60]
C. Zhao, O. Zayed, Z. Yu, W. Jiang, P. Zhu, C.C. Hsu, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci USA, 115 (51) (2018), pp. 13123-13128. DOI: 10.1073/pnas.1816991115
[61]
K. Dünser, S. Gupta, A. Herger, M.I. Feraru, C. Ringli, J. Kleine-Vehn. Extracellular matrix sensing by FERONIA and leucine-rich repeat extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J, 38 (7) (2019), p. e100353
[62]
C. Zhao, W. Jiang, O. Zayed, X. Liu, K. Tang, W. Nie, et al. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl Sci Rev, 8 (1) (2020), p. nwaa149
AI Summary AI Mindmap
PDF(4855 KB)

Accesses

Citations

Detail

Sections
Recommended

/