Dynamic Target Tracking of Unmanned Aerial Vehicles Under Unpredictable Disturbances

Yanjie Chen, Yangning Wu, Limin Lan, Hang Zhong, Zhiqiang Miao, Hui Zhang, Yaonan Wang

Engineering ›› 2024, Vol. 35 ›› Issue (4) : 74-85.

PDF(7326 KB)
PDF(7326 KB)
Engineering ›› 2024, Vol. 35 ›› Issue (4) : 74-85. DOI: 10.1016/j.eng.2023.05.017
Research
Article

Dynamic Target Tracking of Unmanned Aerial Vehicles Under Unpredictable Disturbances

Author information +
History +

Abstract

This study proposes an image-based visual servoing (IBVS) method based on a velocity observer for an unmanned aerial vehicle (UAV) for tracking a dynamic target in Global Positioning System (GPS)-denied environments. The proposed method derives the simplified and decoupled image dynamics of underactuated UAVs using a constructed virtual camera and then considers the uncertainties caused by the unpredictable rotations and velocities of the dynamic target. A novel image depth model that extends the IBVS method to track a rotating target with arbitrary orientations is proposed. The depth model ensures image feature accuracy and image trajectory smoothness in rotating target tracking. The relative velocities of the UAV and the dynamic target are estimated using the proposed velocity observer. Thanks to the velocity observer, translational velocity measurements are not required, and the control chatter caused by noise-containing measurements is mitigated. An integral-based filter is proposed to compensate for unpredictable environmental disturbances in order to improve the anti-disturbance ability. The stability of the velocity observer and IBVS controller is analyzed using the Lyapunov method. Comparative simulations and multistage experiments are conducted to illustrate the tracking stability, anti-disturbance ability, and tracking robustness of the proposed method with a dynamic rotating target.

Graphical abstract

Keywords

Unmanned aerial vehicle / Visual servoing / Velocity observer / Target tracking

Cite this article

Download citation ▾
Yanjie Chen, Yangning Wu, Limin Lan, Hang Zhong, Zhiqiang Miao, Hui Zhang, Yaonan Wang. Dynamic Target Tracking of Unmanned Aerial Vehicles Under Unpredictable Disturbances. Engineering, 2024, 35(4): 74‒85 https://doi.org/10.1016/j.eng.2023.05.017

References

[1]
H.M. Chung, S. Maharjan, Y. Zhang, F. Eliassen, K. Strunz. Placement and routing optimization for automated inspection with unmanned aerial vehicles: a study in offshore wind farm. IEEE Trans Industr Inform, 17 (5) (2021), pp. 3032-3043.
[2]
F. Kendoul. Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J Field Robot, 29 (2) (2012), pp. 315-378.
[3]
D. Scaramuzza, M.C. Achtelik, L. Doitsidis, F. Friedrich, E. Kosmatopoulos, A. Martinelli, et al. Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robot Autom Mag, 21 (3) (2014), pp. 26-40.
[4]
A. McFadyen, M. Jabeur, P. Corke. Image-based visual servoing with unknown point feature correspondence. IEEE Robot Autom Lett, 2 (2) (2017), pp. 601-607.
[5]
M.A. Rafique, A.F. Lynch. Output-feedback image-based visual servoing for multirotor unmanned aerial vehicle line following. IEEE Trans Aerosp Electron Syst, 56 (4) (2020), pp. 3182-3196.
[6]
P. Serra, R. Cunha, T. Hamel, D. Cabecinhas, C. Silvestre. Landing of a quadrotor on a moving target using dynamic image-based visual servo control. IEEE Trans Robot, 32 (6) (2016), pp. 1524-1535.
[7]
H. Xie, K.H. Low, Z. He. Adaptive visual servoing of unmanned aerial vehicles in GPS-denied environments. IEEE/ASME Trans Mechatron, 22 (6) (2017), pp. 2554-2563.
[8]
X. Zhang, Y. Fang, X. Zhang, J. Jiang, X. Chen. A novel geometric hierarchical approach for dynamic visual servoing of quadrotors. IEEE Trans Ind Electron, 67 (5) (2020), pp. 3840-3849.
[9]
K. Zhang, Y. Shi, H. Sheng. Robust nonlinear model predictive control based visual servoing of quadrotor UAVs. IEEE/ASME Trans Mechatron, 26 (2) (2021), pp. 700-708.
[10]
F. Chaumette. S. Hutchinson. Visual servo control. I. Basic approaches. IEEE Robot Autom Mag, 13 (4) (2006), pp. 82-90.
[11]
F. Chaumette. S. Hutchinson. Visual servo control. II. Advanced approaches. IEEE Robot Autom Mag, 14 (1) (2007), pp. 109-118.
[12]
H. Zhong, Z. Miao, Y. Wang, J. Mao, L. Li, H. Zhang, et al. A practical visual servo control for aerial manipulation using a spherical projection model. IEEE Trans Ind Electron, 67 (12) (2020), pp. 10564-10574.
[13]
N. Sun, T. Yang, H. Chen, Y. Fang. Dynamic feedback antiswing control of shipboard cranes without velocity measurement: theory and hardware experiments. IEEE Trans Industr Inform, 15 (5) (2019), pp. 2879-2891.
[14]
A. Abdessameud, A. Tayebi. Global trajectory tracking control of VTOL-UAVs without linear velocity measurements. Automatica, 46 (6) (2010), pp. 1053-1059.
[15]
X. Zhang, Y. Fang, X. Zhang, J. Jiang, X. Chen. Dynamic image-based output feedback control for visual servoing of multirotors. IEEE Trans Industr Inform, 16 (12) (2020), pp. 7624-7636.
[16]
H. Wang, D. Zheng, J. Wang, W. Chen, J. Yuan. Ego-motion estimation of a quadrotor based on nonlinear observer. IEEE/ASME Trans Mechatron, 23 (3) (2018), pp. 1138-1147.
[17]
X. Shao, J. Zhang, W. Zhang. Distributed cooperative surrounding control for mobile robots with uncertainties and aperiodic sampling. IEEE Trans Intell Transp Syst, 23 (10) (2022), pp. 18951-18961.
[18]
J. Zhang, X. Shao, W. Zhang, J. Na. Path-following control capable of reinforcing transient performances for networked mobile robots over a single curve. IEEE Trans Inst Meas, 72 (2023), pp. 1-12.
[19]
D. Lee, T. Ryan, H.J. Kim. Autonomous landing of a VTOL UAV on a moving platform using image-based visual servoing. Proceedings of 2012 IEEE International Conference on Robotics and Automation (ICRA); 2012 May 14-18; Saint Paul, MN, USA, IEEE (2012), pp. 971-976.
[20]
H. Jabbari Asl, G. Oriolo, H. Bolandi. Output feedback image-based visual servoing control of an underactuated unmanned aerial vehicle. Proc Inst Mech Eng Part I J Syst Control Eng, 228 (7) (2014), pp. 435-448.
[21]
Z. Cao, X. Chen, Y. Yu, J. Yu, X. Liu, C. Zhou, et al. Image dynamics-based visual servoing for quadrotors tracking a target with a nonlinear trajectory observer. IEEE Trans Syst Man Cybern Syst, 50 (1) (2020), pp. 376-384.
[22]
J. Lin, Y. Wang, Z. Miao, H. Zhong, J. Nie, R. Fierro. Robust image-based landing control of a quadrotor on an unknown moving platform using circle features. Proceedings of 2021 IEEE International Conference on Real-Time Computing and Robotics (RCAR);2021 Jul 15-19; Xining, China, IEEE (2021), pp. 177-182.
[23]
D. Zheng, H. Wang, J. Wang, S. Chen, W. Chen, X. Liang. Image-based visual servoing of a quadrotor using virtual camera approach. IEEE/ASME Trans Mechatron, 22 (2) (2017), pp. 972-982.
[24]
J. Li, H. Xie, K.H. Low, J. Yong, B. Li. Image-based visual servoing of rotorcrafts to planar visual targets of arbitrary orientation. IEEE Robot Autom Lett, 6 (4) (2021), pp. 7861-7868.
[25]
J. Liang, Y. Chen, N. Lai, B. He, Z. Miao, Y. Wang. Low-complexity prescribed performance control for unmanned aerial manipulator robot system under model uncertainty and unknown disturbances. IEEE Trans Industr Inform, 18 (7) (2022), pp. 4632-4641.
[26]
W. Zhang, X. Shao, W. Zhang, J. Qi, H. Li. Unknown input observer-based appointed-time funnel control for quadrotors. Aerosp Sci Tech, 126 (2022), 107351.
[27]
Z. Zhang, Y. Chen, Y. Wu, L. Lin, B. He, Z. Miao, et al. Gliding grasping analysis and hybrid force/position control for unmanned aerial manipulator system. ISA Trans, 126 (2022), pp. 377-387.
[28]
H. Xie, A.F. Lynch, K.H. Low, S. Mao. Adaptive output-feedback image-based visual servoing for quadrotor unmanned aerial vehicles. IEEE Trans Control Syst Technol, 28 (3) (2020), pp. 1034-1041.
[29]
V. Kumar, N. Michael. Opportunities and challenges with autonomous micro aerial vehicles. Int J Robot Res, 31 (11) (2012), pp. 1279-1291.
[30]
E. Fresk, G. Nikolakopoulos. Full quaternion based attitude control for a quadrotor. Proceedings of 2013 European Control Conference (ECC);2013 Jul 17-19; Zurich, Switzerland, IEEE (2013), pp. 3864-3869.
[31]
N. Lai, Y. Chen, J. Liang, B. He, H. Zhong, Y. Wang. An onboard-eye-to-hand visual servo and task coordination control for aerial manipulator based on a spherical model. Mechatronics, 82 (2022), 102724.
[32]
J. Wang, E. Olson. AprilTag 2:efficient and robust fiducial detection. Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9-14; Daejeon, Republic of Korea, IEEE (2016), pp. 3400-3407.
AI Summary AI Mindmap
PDF(7326 KB)

Accesses

Citations

Detail

Sections
Recommended

/