Biomimetic Macrophage-Fe3O4@PLGA Particle-Triggered Intelligent Catalysis for Killing Multidrug-Resistant Escherichia coli

Jieni Fu, Xiangmei Liu, Zhaoyang Li, Yufeng Zheng, Yu Zhang, Hui Jiang, Yanqin Liang, Shengli Zhu, Zhenduo Cui, Shuilin Wu

Engineering ›› 2024, Vol. 34 ›› Issue (3) : 174-186.

PDF(7066 KB)
PDF(7066 KB)
Engineering ›› 2024, Vol. 34 ›› Issue (3) : 174-186. DOI: 10.1016/j.eng.2023.05.022
Research
Article

Biomimetic Macrophage-Fe3O4@PLGA Particle-Triggered Intelligent Catalysis for Killing Multidrug-Resistant Escherichia coli

Author information +
History +

Abstract

Infections with multidrug-resistant (MDR) Gram-negative bacteria, such as MDR Escherichia coli (E. coli), remain a challenge due to the lack of safe antibiotics and high fatality rates under anti-infection therapies. This work presents a form of biomimetic intelligent catalysis inspired by the selective biocatalytic property of macrophages (MΦs), consisting of an intelligent controlling center (a living MΦ) and a Fenton reaction catalyst (Fe3O4@poly(lactic-co-glycolic acid) (PLGA) nanoparticles) for killing MDR E. coli without harming normal cells. The MΦ-Fe3O4@PLGA particles (i.e., the intelligent catalysis particles) exhibit selective biocatalysis activity toward MDR E. coli by producing H2O2 and lipid droplets (LDs). This process activates the lipid metabolism and glycan biosynthesis and metabolism pathways based on the result of RNA sequencing data analysis. The H2O2 further reacts with Fe3O4@PLGA to form highly toxic hydroxyl radicals (·OH), while the LDs contain antimicrobial peptides and can target MDR E. coli. The highly toxic ·OH and antimicrobial peptides are shown to combat with MDR E. coli, such that the antibacterial efficiency of the MΦ-Fe3O4@PLGA particles against MDR E. coli is 99.29% ± 0.31% in vitro. More importantly, after several passages, the intelligent catalysis function of the MΦ-Fe3O4@PLGA particles is well maintained. Hence, the concept of biomimetic intelligent catalysts displays potential for treating diseases other than infections.

Graphical abstract

Keywords

Multidrug-resistant Escherichia coli / Macrophage-Fe3O4@PLGA particles / Biomimetic intelligent catalysis

Cite this article

Download citation ▾
Jieni Fu, Xiangmei Liu, Zhaoyang Li, Yufeng Zheng, Yu Zhang, Hui Jiang, Yanqin Liang, Shengli Zhu, Zhenduo Cui, Shuilin Wu. Biomimetic Macrophage-Fe3O4@PLGA Particle-Triggered Intelligent Catalysis for Killing Multidrug-Resistant Escherichia coli. Engineering, 2024, 34(3): 174‒186 https://doi.org/10.1016/j.eng.2023.05.022

References

[1]
T.F. Durand-Reville, A.A. Miller, J.P. O’Donnell, X. Wu, M.A. Sylvester, S. Guler, et al. Rational design of a new antibiotic class for drug-resistant infections. Nature, 597 (7878) (2021), pp. 698-702.
[2]
S.J. Lam, N.M. O’Brien-Simpson, N. Pantarat, A. Sulistio, E.H. Wong, Y.Y. Chen, et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol, 1 (11) (2016), p. 16162.
[3]
M. Song, Y. Liu, X. Huang, S. Ding, Y. Wang, J. Shen, et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat Microbiol, 5 (8) (2020), pp. 1040-1050.
[4]
K. Bush, P.A. Bradford. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol, 17 (5) (2019), pp. 295-306.
[5]
C. Walsh. Where will new antibiotics come from?. Nat Rev Microbiol, 1 (1) (2003), pp. 65-70.
[6]
C.A. Russell, M.D. de Jong. Infectious disease management must be evolutionary. Nat Ecol Evol, 1 (8) (2017), pp. 1053-1055.
[7]
F. Rabanal, Y. Cajal. Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep, 34 (7) (2017), pp. 886-908.
[8]
Y. Wang, R. Zhang, J. Li, Z. Wu, W. Yin, S. Schwarz, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol, 2 (4) (2017), p. 16260.
[9]
Z. Wang, B. Koirala, Y. Hernandez, M. Zimmerman, S. Park, D.S. Perlin, et al. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature, 601 (7894) (2022), pp. 606-611.
[10]
K.S. Ikuta, F. Sharara, L. Swetschinski, G. Robles Aguilar, A. Gray, H. Chieh, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399 (10325) (2022), pp. 629-655.
[11]
C.M. Courtney, S.M. Goodman, J.A. McDaniel, N.E. Madinger, A. Chatterjee, P. Nagpal. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat Mater, 15 (5) (2016), pp. 529-534.
[12]
J. Fu, X. Liu, Z. Cui, Y. Zheng, H. Jiang, Y. Zhang, et al. Probiotic-based nanoparticles for targeted microbiota modulation and immune restoration in bacterial pneumonia. Nat Sci Rev, 10 (2) (2022), nwac221.
[13]
Y. Qiao, Y. Xu, X. Liu, Y. Zheng, B. Li, Y. Han, et al. Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria. Nat Commun, 13 (1) (2022), p. 2461.
[14]
X. Huang, F. Venet, Y.L. Wang, A. Lepape, Z. Yuan, Y. Chen, et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci USA, 106 (15) (2009), pp. 6303-6308.
[15]
P. Wang, J. Geng, J. Gao, H. Zhao, J. Li, Y. Shi, et al. Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat Commun, 10 (1) (2019), p. 755.
[16]
J. Fu, Y. Li, Y. Zhang, Y. Liang, Y. Zheng, Z. Li, et al. An engineered pseudo-macrophage for rapid treatment of bacteria-infected osteomyelitis via microwave-excited anti-infection and immunoregulation. Adv Mater, 33 (41) (2021), 2102926.
[17]
F. Ginhoux, J.L. Schultze, P.J. Murray, J. Ochando, S.K. Biswas. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol, 17 (1) (2016), pp. 34-40.
[18]
N. Feuerer, J. Marzi, E.M. Brauchle, D.A. Carvajal Berrio, F. Billing, M. Weiss, et al. Lipidome profiling with Raman microspectroscopy identifies macrophage response to surface topographies of implant materials. Proc Natl Acad Sci USA, 118 (52) (2021), e2113694118.
[19]
S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi, A. Shaw, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol, 11 (11) (2016), pp. 986-994.
[20]
J. Xu, B. Zheng, S. Zhang, X. Liao, Q. Tong, G. Wei, et al. Copper sulfide nanoparticle-redirected macrophages for adoptive transfer therapy of melanoma. Adv Funct Mater, 31 (11) (2021), 2008022.
[21]
X. Zhao, K. Guo, K. Zhang, S. Duan, M. Chen, N. Zhao, et al. Orchestrated yolk-shell nanohybrids regulate macrophage polarization and dendritic cell maturation for oncotherapy with augmented antitumor immunity. Adv Mater, 34 (9) (2022), 2108263.
[22]
Y. Xiao, Y. Fan, W. Tu, Y. Ning, M. Zhu, Y. Liu, et al. Multifunctional PLGA microfibrous rings enable MR imaging-guided tumor chemotherapy and metastasis inhibition through prevention of circulating tumor cell shedding. Nano Today, 38 (2021), 101123.
[23]
Z. Chen, J.J. Yin, Y.T. Zhou, Y. Zhang, L. Song, M. Song, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 6 (5) (2012), pp. 4001-4012.
[24]
C.Y. Zhang, J. Gao, Z. Wang. Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management. Adv Mater, 30 (43) (2018), e1803618.
[25]
J. Fu, X. Liu, L. Tan, Z. Cui, Y. Zheng, Y. Liang, et al. Photoelectric-responsive extracellular matrix for bone engineering. ACS Nano, 13 (11) (2019), pp. 13581-13594.
[26]
X. Chen, L. Li, X. Sun, Y. Liu, B. Luo, C. Wang, et al. Magnetochromatic polydiacetylene by incorporation of Fe3O4 nanoparticles. Angew Chem Int Ed, 50 (24) (2011), pp. 5486-5489.
[27]
Y. Chen, L. Jiang, R. Wang, M. Lu, Q. Zhang, Y. Zhou, et al. Injectable smart phase-transformation implants for highly efficient in vivo magnetic-hyperthermia regression of tumors. Adv Mater, 26 (44) (2014), pp. 7468-7473.
[28]
J. Zheng, Z.Q. Liu, X.S. Zhao, M. Liu, X. Liu, W. Chu. One-step solvothermal synthesis of Fe3O4@C core-shell nanoparticles with tunable sizes. Nanotechnology, 23 (16) (2012), 165601.
[29]
C. Wilhelm, F. Gazeau, J. Roger, J.N. Pons, J.C. Bacri. Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir, 18 (21) (2002), pp. 8148-8155.
[30]
N.K. Verma, K. Crosbie-Staunton, A. Satti, S. Gallagher, K.B. Ryan, T. Doody, et al. Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol, 11 (1) (2013), pp. 1-12.
[31]
G. Tansık, A. Yakar, U. Gündüz. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery. J Nanopart Res, 16 (1) (2013), pp. 1-13.
[32]
M. Hurbankova, K. Volkovova, D. Hraskova, S. Wimmerova, S. Moricova. Respiratory toxicity of Fe3O4 nanoparticles: experimental study. Rev Environ Health, 32 (1-2) (2017), pp. 207-210.
[33]
X. Zhang, H. Zhang, X. Liang, J. Zhang, W. Tao, X. Zhu, et al. Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: lysosome impairment, mitochondrial damage, and ER stress. Mol Pharm, 13 (7) (2016), pp. 2578-2587.
[34]
J. Yao, D. Wu, C. Zhang, T. Yan, Y. Zhao, H. Shen, et al. Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation. Nat Immunol, 22 (10) (2021), pp. 1268-1279.
[35]
M.C. Schoelmerich, A. Katsyv, J. Dönig, T.J. Hackmann, V. Müller. Energy conservation involving 2 respiratory circuits. Proc Natl Acad Sci USA, 117 (2) (2020), pp. 1167-1173.
[36]
L. Yang, M. Xie, M. Yang, Y. Yu, S. Zhu, W. Hou, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun, 5 (1) (2014), p. 4436.
[37]
D.G. Russell, L. Huang, B.C. VanderVen. Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol, 19 (5) (2019), pp. 291-304.
[38]
L. Tan, J. Fu, F. Feng, X. Liu, Z. Cui, B. Li, et al. Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Sci Adv, 6 (46) (2020), eaba5723.
[39]
Y. Zhu, H. Liang, X. Liu, J. Wu, C. Yang, T.M. Wong, et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Sci Adv, 7 (14) (2021), eabf6654.
[40]
A. Sindrilaru, T. Peters, S. Wieschalka, C. Baican, A. Baican, H. Peter, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest, 121 (3) (2011), pp. 985-997.
[41]
M. Bosch, M. Sánchez-Álvarez, A. Fajardo, R. Kapetanovic, B. Steiner, F. Dutra, et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 370 (6514) (2020), eaay8085.
[42]
J.K. Kim, S. Uchiyama, H. Gong, A. Stream, L. Zhang, V. Nizet. Engineered biomimetic platelet membrane-coated nanoparticles block Staphylococcus aureus cytotoxicity and protect against lethal systemic infection. Engineering, 7 (8) (2021), pp. 1149-1156.
[43]
J. Wu, Y. Yu, Y. Cheng, C. Cheng, Y. Zhang, B. Jiang, et al. Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal-organic framework nanozyme for therapy. Angew Chem Int Ed, 60 (3) (2021), pp. 1227-1234.
[44]
X. Duan, Y. Li. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small, 9 (9-10) (2013), pp. 1521-1532.
[45]
P.S. Chu, N. Nakamoto, H. Ebinuma, S. Usui, K. Saeki, A. Matsumoto, et al. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology, 58 (1) (2013), pp. 337-350.
[46]
M. Arabpour, A. Saghazadeh, N. Rezaei. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int Immunopharmacol, 97 (2021), 107823.
[47]
J. Cui, X. Wu, Y. Song, Y. Chen, J. Wan. Complement C3 exacerbates renal interstitial fibrosis by facilitating the M1 macrophage phenotype in a mouse model of unilateral ureteral obstruction. Am J Physiol Renal Physiol, 317 (5) (2019), pp. F1171-F1182.
[48]
W.J.M. Van Zuijlen, K. Schroder, V. Garceau, M.J. Sweet, S. Kellie, D.A. Hume. Expression and function of Schlafen-4 in macrophage biology and inflammation. Cytokine, 43 (3) (2008), p. 246.
[49]
P. Signorelli, F. Pivari, M. Barcella, I. Merelli, A. Zulueta, M. Dei Cas, et al. Myriocin modulates the altered lipid metabolism and storage in cystic fibrosis. Cell Signal, 81 (2021), 109928.
[50]
D.C. Wathes, Z. Cheng, M. Salavati, L. Buggiotti, H. Takeda, L. Tang, et al. Relationships between metabolic profiles and gene expression in liver and leukocytes of dairy cows in early lactation. J Dairy Sci, 104 (3) (2021), pp. 3596-3616.
[51]
F. Huang, F. Liao, G. Ma, Y. Hu, C. Zhang, P. Xu, et al. TBRG 4 knockdown suppresses proliferation and growth of human osteosarcoma cell lines MG63 through PI3K/AKT pathway. OncoTargets Ther, 13 (2020), pp. 7271-7281.
[52]
D.L.J. Thorek, A.K. Chen, J. Czupryna, A. Tsourkas. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng, 34 (1) (2006), pp. 23-38.
[53]
C. Zhang, W. Bu, D. Ni, S. Zhang, Q. Li, Z. Yao, et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew Chem Int Ed, 55 (6) (2016), pp. 2101-2106.
[54]
H. Liu, J. Li, X. Liu, Z. Li, Y. Zhang, Y. Liang, et al. Photo-sono interfacial engineering exciting the intrinsic property of herbal nanomedicine for rapid broad-spectrum bacteria killing. ACS Nano, 15 (11) (2021), pp. 18505-18519.
[55]
L. Jin, X. Liu, Y. Zheng, Z. Li, Y. Zhang, S. Zhu, et al. Interface polarization strengthened microwave catalysis of MoS2/FeS/Rhein for the therapy of bacteria-infected osteomyelitis. Adv Funct Mater, 32 (33) (2022), 2204437.
AI Summary AI Mindmap
PDF(7066 KB)

Accesses

Citations

Detail

Sections
Recommended

/