Advances in Triboelectric Nanogenerators for Blue Energy Harvesting and Marine Environmental Monitoring

Yang Jiang, Xi Liang, Tao Jiang, Zhong Lin Wang

Engineering ›› 2024, Vol. 33 ›› Issue (2) : 204-224.

PDF(7118 KB)
PDF(7118 KB)
Engineering ›› 2024, Vol. 33 ›› Issue (2) : 204-224. DOI: 10.1016/j.eng.2023.05.023
Research
Review

Advances in Triboelectric Nanogenerators for Blue Energy Harvesting and Marine Environmental Monitoring

Author information +
History +

Abstract

Blue energy, which includes rainfall, tidal current, wave, and water-flow energy, is a promising renewable resource, although its exploitation is limited by current technologies and thus remains low. This form of energy is mainly harvested by electromagnetic generators (EMGs), which generate electricity via Lorenz force-driven electron flows. Triboelectric nanogenerators (TENGs) and TENG networks exhibit superiority over EMGs in low-frequency and high-entropy energy harvesting as a new approach for blue energy harvesting. A TENG produces electrical outputs by adopting the mechanism of Maxwell’s displacement current. To date, a series of research efforts have been made to optimize the structure and performance of TENGs for effective blue energy harvesting and marine environmental applications. Despite the great progress that has been achieved in the use of TENGs in this context so far, continuous exploration is required in energy conversion, device durability, power management, and environmental applications. This review reports on advances in TENGs for blue energy harvesting and marine environmental monitoring. It introduces the theoretical foundations of TENGs and discusses advanced TENG prototypes for blue energy harvesting, including TENG structures that function in freestanding and contact-separation modes. Performance enhancement strategies for TENGs intended for blue energy harvesting are also summarized. Finally, marine environmental applications of TENGs based on blue energy harvesting are discussed.

Graphical abstract

Keywords

Triboelectric nanogenerator (TENG) / TENG networks / Blue energy / Energy harvesting / Ocean sensors

Cite this article

Download citation ▾
Yang Jiang, Xi Liang, Tao Jiang, Zhong Lin Wang. Advances in Triboelectric Nanogenerators for Blue Energy Harvesting and Marine Environmental Monitoring. Engineering, 2024, 33(2): 204‒224 https://doi.org/10.1016/j.eng.2023.05.023

References

[1]
P. Boccotti. On a new wave energy absorber. Ocean Eng, 30 (9) (2003), pp. 1191-1200
[2]
Y. Guo, Q. Han, J. Wang, X. Yu. Energy-aware localization algorithm for ocean Internet of Things. Sens Rev, 38 (2) (2018), pp. 129-136
[3]
S. Kröger, R.J. Law. Sensing the sea. Trends Biotechnol, 23 (5) (2005), pp. 250-256
[4]
J. Falnes. A review of wave-energy extraction. Mar Structures, 20 (4) (2007), pp. 185-201
[5]
D. Khojasteh, R. Kamali. Evaluation of wave energy absorption by heaving point absorbers at various hot spots in Iran seas. Energy, 109 (2016), pp. 629-640
[6]
H. Lu, D. Wang, Y. Li, J. Li, X. Li, H. Kim, et al.. CONet: a cognitive ocean network. IEEE Wirel Commun, 26 (3) (2019), pp. 90-96
[7]
M. Marcelli, V. Piermattei, A. Madonia, U. Mainardi. Design and application of new low-cost instruments for marine environmental research. Sensors, 14 (12) (2014), pp. 23348-23364
[8]
M. Sudhakar, A. Trishul, M. Doble, K. Suresh Kumar, S. Syed Jahan, D. Inbakandan, et al.. Biofouling and biodegradation of polyolefins in ocean waters. Polym Degrad Stabil, 92 (9) (2007), pp. 1743-1752
[9]
N. Wu, Q. Wang, X. Xie. Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Appl Ocean Res, 50 (2015), pp. 110-118
[10]
J. Yang, J. Wen, Y. Wang, B. Jiang, H. Wang, H. Song. Fog-based marine environmental information monitoring toward ocean of things. IEEE Internet Things, 7 (5) (2020), pp. 4238-4247
[11]
C. Zheng, L. Shao, W. Shi, Q. Su, G. Lin, X. Li, et al.. An assessment of global ocean wave energy resources over the last 45 a. Acta Oceanol Sin, 33 (1) (2014), pp. 92-101
[12]
A.G.L. Borthwick. Marine renewable energy seascape. Engineering, 2 (1) (2016), pp. 69-78
[13]
J.A. Callow, M.E. Callow. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun, 2 (1) (2011), p. 244
[14]
R.V. Chaplin. Seaweaver: a new surge-resonant wave energy converter. Renew Energy, 57 (2013), pp. 662-670
[15]
H. Chen, T. Tang, N. Ait-Ahmed, M.E.H. Benbouzid, M. Machmoum, M.E.H. Zaim. Attraction, challenge and current status of marine current energy. IEEE Access, 6 (2018), p. 12665
[16]
T.V. Heath. A review of oscillating water columns. Philos Trans Royal Soc, 2012 (370) (1959), pp. 235-245
[17]
S.D. Kwon, J. Park, K. Law. Electromagnetic energy harvester with repulsively stacked multilayer magnets for low frequency vibrations. Smart Mater Struct, 22 (5) (2013), Article 055007
[18]
Y.C. Lai, Y.C. Hsiao, H.M. Wu, Z.L. Wang. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv Sci, 6 (5) (2019), Article 1801883
[19]
M. Leijon, O. Danielsson, M. Eriksson, K. Thorburn, H. Bernhoff, J. Isberg, et al.. An electrical approach to wave energy conversion. Renew Energy, 31 (9) (2006), pp. 1309-1319
[20]
A. Lucas, R. Pinkel, M. Alford. Ocean wave energy for long endurance, broad bandwidth ocean monitoring. Oceanography, 30 (2) (2017), pp. 126-127
[21]
J. Luo, Z.L. Wang. Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Mater, 23 (2019), pp. 617-628
[22]
M. Melikoglu. Current status and future of ocean energy sources: a global review. Ocean Eng, 148 (2018), pp. 563-573
[23]
G. Moretti, M. Santos Herran, D. Forehand, M. Alves, H. Jeffrey, R. Vertechy, et al.. Advances in the development of dielectric elastomer generators for wave energy conversion. Renew Sustain Energy Rev, 117 (2020), Article 109430
[24]
P. Mueller, H. Thoss, L. Kaempf, A. Güntner. A buoy for continuous monitoring of suspended sediment dynamics. Sensors, 13 (10) (2013), pp. 13779-13801
[25]
H. Mutsuda, Y. Tanaka, R. Patel, Y. Doi. Harvesting flow-induced vibration using a highly flexible piezoelectric energy device. Appl Ocean Res, 68 (2017), pp. 39-52
[26]
X. Wang, J. Shang, Z. Luo, L. Tang, X. Zhang, J. Li. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles. Renew Sustain Energy Rev, 16 (4) (2012), pp. 1958-1970
[27]
Z. Wang, Y. Yu, Y. Wang, X. Lu, T. Cheng, G. Bao, et al.. Magnetic flap-type difunctional sensor for detecting pneumatic flow and liquid level based on triboelectric nanogenerator. ACS Nano, 14 (5) (2020), pp. 5981-5987
[28]
T. Zhao, M. Xu, X. Xiao, Y. Ma, Z. Li, Z.L. Wang. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 88 (2021), Article 106199
[29]
D. Yurchenko, P. Alevras. Parametric pendulum based wave energy converter. Mech Syst Signal Process, 99 (2018), pp. 504-515
[30]
M.C. Domingo. An overview of the internet of underwater things. J Netw Comput Appl, 35 (6) (2012), pp. 1879-1890
[31]
V. Martínez-Vicente, J.R. Clark, P. Corradi, S. Aliani, M. Arias, M. Bochow, et al.. Measuring marine plastic debris from space: initial assessment of observation requirements. Remote Sens, 11 (20) (2019), p. 2443
[32]
G. Xu, W. Shen, X. Wang. Applications of wireless sensor networks in marine environment monitoring: a survey. Sensors, 14 (9) (2014), pp. 16932-16954
[33]
H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun, Q. Shen, et al.. Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano Micro Lett, 10 (3) (2018), p. 54
[34]
Z. Wu, H. Guo, W. Ding, Y.C. Wang, L. Zhang, Z.L. Wang. A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano, 13 (2) (2019), pp. 2349-2356
[35]
P Cheng, H Guo, Z Wen, C Zhang, X Yin, X Li, et al.. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 57 (2019), pp. 432-439
[36]
W. Zhang, Y. Shi, Y. Li, X. Chen, H. Shen. A review: contact electrification on special interfaces. Front Mater, 9 (2022), Article 909746
[37]
F.R. Fan, Z.Q. Tian, W.Z. Lin. Flexible triboelectric generator. Nano Energy, 1 (2) (2012), pp. 328-334
[38]
Z.L. Wang. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss, 176 (2014), pp. 447-458
[39]
Z.L. Wang. Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Adv Energy Mater, 10 (17) (2020), p. 2000137
[40]
Z.L. Wang, T. Jiang, L. Xu. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 39 (2017), pp. 9-23
[41]
H. Zhao, M. Xu, M. Shu, J. An, W. Ding, X. Liu, et al.. Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat Commun, 13 (1) (2022), p. 3325
[42]
D.L. Vu, C.P. Vo, C.D. Le, K.K. Ahn. Enhancing the output performance of fluid-based triboelectric nanogenerator by using poly (vinylidene fluoride-co-hexafluoropropylene)/ionic liquid nanoporous membrane. Int J Energy Res, 45 (2021), p. 8960
[43]
C. Fang, T. Tong, T. Bu, Y. Cao, S. Xu, Y. Qi, et al.. Overview of power management for triboelectric nanogenerators. Adv Intell Syst-Ger, 2 (2) (2020), Article 1900129
[44]
Z.L. Wang. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today, 20 (2) (2017), pp. 74-82
[45]
Z.L. Wang. Entropy theory of distributed energy for internet of things. Nano Energy, 58 (2019), pp. 669-672
[46]
H. Wang, L. Xu, Z. Wang. Advances of high-performance triboelectric nanogenerators for blue energy harvesting. Nanoenergy Adv, 1 (1) (2021), pp. 32-57
[47]
B. Huang, P. Wang, L. Wang, S. Yang, D. Wu. Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: an overview. Nanotechnol Rev, 9 (1) (2020), pp. 716-735
[48]
F. Xi, Y. Pang, W. Li, T. Jiang, L. Zhang, T. Guo, et al.. Universal power management strategy for triboelectric nanogenerator. Nano Energy, 37 (2017), pp. 168-176
[49]
O. Ellabban, H. Abu-Rub, F. Blaabjerg. Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev, 39 (2014), pp. 748-764
[50]
R. Henderson. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renew Energy, 31 (2) (2006), pp. 271-283
[51]
X. Liang, T. Jiang, G. Liu, T. Xiao, L. Xu, W. Li, et al.. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv Funct Mater, 29 (41) (2019), Article 1807241
[52]
W. Xu, X. Li, J. Brugger, X. Liu. Study of the enhanced electricity output of a sliding droplet-based triboelectric nanogenerator for droplet sensor design. Nano Energy, 98 (2022), Article 107166
[53]
H.M. Yang, M.M. Deng, Q. Tang, W.C. He, C.G. Hu, Y. Xi, et al.. A nonencapsulative pendulum-like paper-based hybrid nanogenerator for energy harvesting. Adv Energy Mater, 9 (33) (2019), Article 1901149
[54]
Z. Ying, Y. Long, F. Yang, Y. Dong, J. Li, Z. Zhang, et al.. Self-powered liquid chemical sensors based on solid-liquid contact electrification. Analyst, 146 (5) (2021), pp. 1656-1662
[55]
C. Zhang, B. Zhang, W. Yuan, O. Yang, Y. Liu, L. He, et al.. Seawater-based triboelectric nanogenerators for marine anticorrosion. ACS Appl Mater Interfaces, 14 (6) (2022), pp. 8605-8612
[56]
Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, et al.. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv Mater, 26 (33) (2014), pp. 5851-5856
[57]
H. Zhou, J. Dong, H. Liu, L. Zhu, C. Xu, X. He, et al.. The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator. Nano Energy, 95 (2022), Article 107050
[58]
H. Chen, C. Xing, Y. Li, J. Wang, Y. Xu. Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system. Sustain Energy Fuels, 4 (3) (2020), pp. 1063-1077
[59]
C. Xu, B. Zhang, A.C. Wang, H. Zou, G. Liu, W. Ding, et al.. Contact-electrification between two identical materials: curvature effect. ACS Nano, 13 (2) (2019), pp. 2034-2041
[60]
F. Yi, L. Lin, S. Niu, J. Yang, W. Wu, S. Wang, et al.. Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor. Adv Funct Mater, 24 (47) (2014), pp. 7488-7494
[61]
H. Zhang, Y. Yang, Y. Su, J. Chen, K. Adams, S. Lee, et al.. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv Funct Mater, 24 (10) (2014), pp. 1401-1407
[62]
X. Zhang, Y. Zheng, D. Wang, Z.U. Rahman, F. Zhou. Liquid-solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water. Nano Energy, 30 (2016), pp. 321-329
[63]
G. Zhu, P. Bai, J. Chen, W.Z. Lin. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy, 2 (5) (2013), pp. 688-692
[64]
G. Zhu, Z.H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, et al.. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett, 13 (2) (2013), pp. 847-853
[65]
G. Zhu, J. Chen, Y. Liu, P. Bai, Y.S. Zhou, Q. Jing, et al.. Linear-grating triboelectric generator based on sliding electrification. Nano Lett, 13 (5) (2013), pp. 2282-2289
[66]
M. Zhu, T. He, C. Lee. Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl Phys Rev, 7 (3) (2020), p. 031305
[67]
Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang, Z.L. Wang. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat Commun, 6 (1) (2015), p. 8376
[68]
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, et al.. Quantifying the triboelectric series. Nat Commun, 10 (1) (2019), p. 1427
[69]
H. Xue, Q. Yang, D. Wang, W. Luo, W. Wang, M. Lin, et al.. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy, 38 (2017), pp. 147-154
[70]
G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing, J. Chen, et al.. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv Mater, 26 (23) (2014), pp. 3788-3796
[71]
Z.L. Wang. From contact electrification to triboelectric nanogenerators. Rep Prog Phys, 84 (9) (2021), Article 096502
[72]
L. Xu, T. Jiang, P. Lin, J.J. Shao, C. He, W. Zhong, et al.. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano, 12 (2) (2018), pp. 1849-1858
[73]
Z.L. Wang. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy, 68 (2020), Article 104272
[74]
Z.L. Wang. On the expanded Maxwell’s equations for moving charged media system-general theory, mathematical solutions and applications in TENG. Mater Today, 52 (2022), pp. 348-363
[75]
Z.L. Wang. The expanded Maxwell’s equations for a mechano-driven media system that moves with acceleration. Int J Mod Phys B, 37 (16) (2023), Article 2350159
[76]
C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv Mater, 26 (22) (2014), pp. 3580-3591
[77]
X. Wang, S. Niu, Y. Yin, F. Yi, Z. You, Z.L. Wang. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv Energy Mater, 5 (24) (2015), p. 1501467
[78]
A. Ahmed, Z. Saadatnia, I. Hassan, Y. Zi, Y. Xi, X. He, et al.. Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy. Adv Energy Mater, 7 (7) (2017), Article 1601705
[79]
W. Liu, L. Xu, T. Bu, H. Yang, G. Liu, W. Li, et al.. Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy, 58 (2019), pp. 499-507
[80]
P. Chen, J. An, S. Shu, R. Cheng, J. Nie, T. Jiang, et al.. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv Energy Mater, 11 (9) (2021), Article 2003066
[81]
Y. Bai, L. Xu, C. He, L. Zhu, X. Yang, T. Jiang, et al.. High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy, 66 (2019), Article 104117
[82]
T. Jiang, H. Pang, J. An, P. Lu, Y. Feng, X. Liang, et al.. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv Energy Mater, 10 (23) (2020), Article 2000064
[83]
Y. Feng, X. Liang, J. An, T. Jiang, Z.L. Wang. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy, 81 (2021), Article 105625
[84]
X. Yang, L. Xu, P. Lin, W. Zhong, Y. Bai, J. Luo, et al.. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy, 60 (2019), pp. 404-412
[85]
T. Jiang, Y. Yao, L. Xu, L. Zhang, T. Xiao, Z.L. Wang. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy, 31 (2017), pp. 560-567
[86]
X. Liang, Z. Liu, Y. Feng, J. Han, L. Li, J. An, et al.. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy, 83 (2021), Article 105836
[87]
M. Xu, P. Wang, Y.C. Wang, S.L. Zhang, A.C. Wang, C. Zhang, et al.. A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Adv Funct Mater, 8 (9) (2018), Article 1702432
[88]
F. Xi, Y. Pang, G. Liu, S. Wang, W. Li, C. Zhang, et al.. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy, 61 (2019), pp. 1-9
[89]
T.X. Xiao, X. Liang, T. Jiang, L. Xu, J.J. Shao, J.H. Nie, et al.. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv Funct Mater, 28 (35) (2018), Article 1802634
[90]
J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi, Q. Jing, et al.. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano, 9 (3) (2015), pp. 3324-3331
[91]
Z. Lin, B. Zhang, Y. Xie, Z. Wu, J. Yang, Z.L. Wang. Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv Funct Mater, 31 (40) (2021), Article 2105237
[92]
Z. Ren, X. Liang, D. Liu, X. Li, J. Ping, Z. Wang, et al.. Water-wave driven route avoidance warning system for wireless ocean navigation. Adv Energy Mater, 11 (31) (2021), Article 2101116
[93]
W. Xie, L. Gao, L. Wu, X. Chen, F. Wang, D. Tong, et al.. A nonresonant hybridized electromagnetic-triboelectric nanogenerator for irregular and ultralow frequency blue energy harvesting. Research, 2021 (2021), Article 5963293
[94]
X.S. Zhang, M.D. Han, B. Meng, H.X. Zhang. High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energy, 11 (2015), pp. 304-322
[95]
H. Zou, L. Guo, H. Xue, Y. Zhang, X. Shen, X. Liu, et al.. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat Commun, 11 (1) (2020), Article 2093
[96]
C. Hou, T. Chen, Y. Li, M. Huang, Q. Shi, H. Liu, et al.. A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy, 63 (2019), Article 103871
[97]
X. Chen, L. Gao, J. Chen, S. Lu, H. Zhou, T. Wang, et al.. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy, 69 (2020), Article 104440
[98]
J.Y. Wang, L. Pan, H.Y. Guo, B.B. Zhang, R.R. Zhang, Z.Y. Wu, et al.. Rational structure optimized hybrid nanogenerator for highly efficient water wave energy harvesting. Adv Energy Mater, 9 (8) (2019), Article 1802892
[99]
S. Tian, X. Wei, L. Lai, B. Li, Z. Wu, Y. Dai. Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting. Nano Energy, 102 (2022), Article 107669
[100]
Z. Zhu, H. Xiang, Y. Zeng, J. Zhu, X. Cao, N. Wang, et al.. Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis. Nano Energy, 93 (2022), Article 106776
[101]
Q. Zhang, Q. Liang, D.K. Nandakumar, H. Qu, Q. Shi, F.I. Alzakia, et al.. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nat Commun, 12 (1) (2021), p. 616
[102]
Z.L. Wang. Catch wave power in floating nets. Nature, 542 (7640) (2017), pp. 159-160
[103]
M. Xu, T. Zhao, C. Wang, S.L. Zhang, Z. Li, X. Pan, et al.. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano, 13 (2) (2019), pp. 1932-1939
[104]
S.L. Zhang, M. Xu, C. Zhang, Y.C. Wang, H. Zou, X. He, et al.. Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy, 48 (2018), pp. 421-429
[105]
L. Cheng, Q. Xu, Y. Zheng, X. Jia, Y. Qin. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat Commun, 9 (1) (2018), Article 3773
[106]
L. Xu, T.Z. Bu, X.D. Yang, C. Zhang, Z.L. Wang. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy, 49 (2018), pp. 625-633
[107]
W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, et al.. Integrated charge excitation triboelectric nanogenerator. Nat Commun, 10 (1) (2019), p. 1426
[108]
W. Liu, Z. Wang, G. Wang, Q. Zeng, W. He, L. Liu, et al.. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat Commun, 11 (1) (2020), p. 1883
[109]
H. Wang, L. Xu, Y. Bai, Z.L. Wang. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat Commun, 11 (1) (2020), p. 4203
[110]
J. An, Z.M. Wang, T. Jiang, X. Liang, Z.L. Wang. Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv Funct Mater, 29 (39) (2019), Article 1904867
[111]
X. Liang, T. Jiang, Y.W. Feng, P.J. Lu, J. An, Z.L. Wang. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv Energy Mater, 10 (40) (2020), Article 2002123
[112]
P. Cheng, Y. Liu, Z. Wen, H. Shao, A. Wei, X. Xie, et al.. Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy, 54 (2018), pp. 156-162
[113]
D.Y. Kim, H.S. Kim, D.S. Kong, M. Choi, H.B. Kim, J.H. Lee, et al.. Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea. Nano Energy, 45 (2018), pp. 247-254
[114]
J. Han, Y. Liu, Y. Feng, T. Jiang, Z.L. Wang. Achieving a large driving force on triboelectric nanogenerator by wave-driven linkage mechanism for harvesting blue energy toward marine environment monitoring. Adv Energy Mater, 13 (5) (2022), Article 2203219
[115]
Z. Zhou, X. Li, Y. Wu, H. Zhang, Z. Lin, K. Meng, et al.. Wireless self-powered sensor networks driven by triboelectric nanogenerator for in-situ real time survey of environmental monitoring. Nano Energy, 53 (2018), pp. 501-507
[116]
X. Li, J. Tao, X. Wang, J. Zhu, C. Pan, Z.L. Wang. Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy. Adv Energy Mater, 8 (21) (2018), Article 1800705
[117]
B.D. Chen, W. Tang, C. He, C.R. Deng, L.J. Yang, L.P. Zhu, et al.. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater Today, 21 (1) (2018), pp. 88-97
[118]
X.J. Zhao, S.Y. Kuang, Z.L. Wang, G. Zhu. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano, 12 (5) (2018), pp. 4280-4285
[119]
H. Hong, X. Yang, H. Cui, D. Zheng, H. Wen, R. Huang, et al.. Self-powered seesaw structured spherical buoys based on a hybrid triboelectric-electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ Sci, 15 (2) (2022), pp. 621-632
[120]
H. Wang, Q. Zhu, Z. Ding, Z. Li, H. Zheng, J. Fu, et al.. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy, 57 (2019), pp. 616-624
[121]
H. Chen, J. Wang, A. Ning. Optimization of a rolling triboelectric nanogenerator based on the nano-micro structure for ocean environmental monitoring. ACS Omega, 6 (32) (2021), pp. 21059-21065
[122]
L. Xu, Y. Tang, C. Zhang, F. Liu, J. Chen, W. Xuan, et al.. Fully self-powered instantaneous wireless liquid level sensor system based on triboelectric nanogenerator. Nano Res, 15 (6) (2022), pp. 5425-5434
[123]
P. Wang, S. Zhang, L. Zhang, L. Wang, H. Xue, Z.L. Wang. Non-contact and liquid-liquid interfacing triboelectric nanogenerator for self-powered water/liquid level sensing. Nano Energy, 72 (2020), Article 104703
[124]
H. Pang, Y. Feng, J. An, P. Chen, J. Han, T. Jiang, et al.. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv Funct Mater, 31 (47) (2021), Article 2106398
[125]
Y. Feng, J. Han, M. Xu, X. Liang, T. Jiang, H. Li, et al.. Blue energy for green hydrogen fuel: a self-powered electrochemical conversion system driven by triboelectric nanogenerators. Adv Energy Mater, 12 (1) (2022), p. 2103143
[126]
X. Liu, X. Xu, F. Zhang, X. Ge, H. Ji, Y. Li, et al.. A synergistic anti-corrosion system based on durable superhydrophobic F-SiO2 /epoxy coatings and self-powered cathodic protection. J Mater Chem A Mater Energy Sustain, 10 (36) (2022), pp. 18616-18625
[127]
B. Zhang, C. Zhang, W. Yuan, O. Yang, Y. Liu, L. He, et al.. Highly stable and eco-friendly marine self-charging power systems composed of conductive polymer supercapacitors with seawater as an electrolyte. ACS Appl Mater Interfaces, 14 (7) (2022), pp. 9046-9056
AI Summary AI Mindmap
PDF(7118 KB)

Accesses

Citations

Detail

Sections
Recommended

/