Profiling the Antimalarial Mechanism of Artemisinin by Identifying Crucial Target Proteins

Peng Gao, Jianyou Wang, Jiayun Chen, Liwei Gu, Chen Wang, Liting Xu, Yin Kwan Wong, Huimin Zhang, Chengchao Xu, Lingyun Dai, Jigang Wang

Engineering ›› 2023, Vol. 31 ›› Issue (12) : 86-97.

PDF(4703 KB)
PDF(4703 KB)
Engineering ›› 2023, Vol. 31 ›› Issue (12) : 86-97. DOI: 10.1016/j.eng.2023.06.001
Research
Article

Profiling the Antimalarial Mechanism of Artemisinin by Identifying Crucial Target Proteins

Author information +
History +

Abstract

The widespread use of artemisinin (ART) and its derivatives has significantly reduced the global burden of malaria; however, malaria still poses a serious threat to global health. Although significant progress has been achieved in elucidating the antimalarial mechanisms of ART, the most crucial target proteins and pathways of ART remain unknown. Knowledge on the exact antimalarial mechanisms of ART is urgently needed, as signs of emerging ART resistance have been observed in some regions of the world. Here, we used a combined strategy involving mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) and transcriptomics profiling to identify a group of putative antimalarial targets of ART. We then conducted a series of validation experiments on five prospective protein targets, demonstrating that ART may function against malaria parasites by interfering with redox homeostasis, lipid metabolism, and protein synthesis processes. Taken together, this study provides fresh perspectives on the antimalarial mechanisms of ART and identifies several crucial proteins involved in parasite survival that can be targeted to combat malaria.

Graphical abstract

Keywords

Artemisinin / Antimalaria / Target identification / MS-CETSA / Transcriptomics

Cite this article

Download citation ▾
Peng Gao, Jianyou Wang, Jiayun Chen, Liwei Gu, Chen Wang, Liting Xu, Yin Kwan Wong, Huimin Zhang, Chengchao Xu, Lingyun Dai, Jigang Wang. Profiling the Antimalarial Mechanism of Artemisinin by Identifying Crucial Target Proteins. Engineering, 2023, 31(12): 86‒97 https://doi.org/10.1016/j.eng.2023.06.001

References

[1]
M.A. Phillips, J.N. Burrows, C. Manyando, R.H. van Huijsduijnen, W.C. van Voorhis, T.N.C. Wells. Malaria Nat Rev Dis Primers, 3 (1) ( 2017), Article 17050
[2]
WHO. World malaria report 2022 [Internet]. Geneva: WHO; 2022 Dec 8 [ cited 2022 Dec 10]. Available from: https://www.who.int/publications/i/item/9789240064898.
[3]
R.W. Van der Pluijm, C. Amaratunga, M. Dhorda, A.M. Dondorp. Triple artemisinin-based combination therapies for malaria—a new paradigm?. Trends Parasitol, 37 (1) ( 2021), pp. 15-24
[4]
E.A. Ashley, M. Dhorda, R.M. Fairhurst, C. Amaratunga, P. Lim, S. Suon, et al.. TRAC. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med, 371 (5) ( 2014), pp. 411-423 DOI: 10.1056/NEJMoa1314981
[5]
H. Noedl, Y. Se, K. Schaecher, B.L. Smith, D. Socheat, M.M. Fukuda. ARC 1 Study Consortium. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med, 359 (24) ( 2008), pp. 2619-2620 DOI: 10.1056/NEJMc0805011
[6]
J. Yang, Y. He, Y. Li, X. Zhang, Y.K. Wong, S. Shen, et al.. Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacol Ther, 216 ( 2020), Article 107697
[7]
H.J. Benns, E.W. Tate, M.A. Child. Activity-based protein profiling for the study of parasite biology. Curr Top Microbiol Immunol, 420 ( 2019), pp. 155-174
[8]
M. Zhou, A. Varol, T. Efferth. Multi-omics approaches to improve malaria therapy. Pharmacol Res, 167 ( 2021), Article 105570
[9]
C. Kamaliddin, E. Guillochon, V. Salnot, D. Rombaut, S. Huguet, F. Guillonneau, et al.. Comprehensive analysis of transcript and protein relative abundance during blood stages of plasmodium falciparum infection. J Proteome Res, 20 (2) ( 2021), pp. 1206-1216 DOI: 10.1021/acs.jproteome.0c00496
[10]
J. Wang, C.J. Zhang, W.N. Chia, C.C. Loh, Z. Li, Y.M. Lee, et al.. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun, 6 (1) ( 2015), Article 10111
[11]
K.J. Wicht, S. Mok, D.A. Fidock. Molecular mechanisms of drug resistance in plasmodium falciparum malaria. Annu Rev Microbiol, 74 (1) ( 2020), pp. 431-454 DOI: 10.1146/annurev-micro-020518-115546
[12]
H.M. Ismail, V. Barton, M. Phanchana, S. Charoensutthivarakul, M.H. Wong, J. Hemingway, et al.. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc Natl Acad Sci USA, 113 (8) ( 2016), pp. 2080-2085 DOI: 10.1073/pnas.1600459113
[13]
H.M. Ismail, V.E. Barton, M. Phanchana, S. Charoensutthivarakul, G.A. Biagini, S.A. Ward, et al.. A click chemistry-based proteomic approach reveals that 1,2,4-trioxolane and artemisinin antimalarials share a common protein alkylation profile. Angew Chem Weinheim Bergstr Ger, 128 (22) ( 2016), pp. 6511-6515
CrossRef Google scholar
[14]
D. Martinez Molina, R. Jafari, M. Ignatushchenko, T. Seki, E.A. Larsson, C. Dan, et al.. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science, 341 (6141) ( 2013), pp. 84-87
[15]
L. Dai, N. Prabhu, L.Y. Yu, S. Bacanu, A.D. Ramos, P. Nordlund. Horizontal cell biology: monitoring global changes of protein interaction states with the proteome-wide cellular thermal shift assay (CETSA). Annu Rev Biochem, 88 (1) ( 2019), pp. 383-408 DOI: 10.1146/annurev-biochem-062917-012837
[16]
J.M. Dziekan, H. Yu, D. Chen, L. Dai, G. Wirjanata, A. Larsson, et al.. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci Transl Med, 11 (473) ( 2019), Article eaau3174
[17]
P. Gao, Y.Q. Liu, W. Xiao, F. Xia, J.Y. Chen, L.W. Gu, et al.. Identification of antimalarial targets of chloroquine by a combined deconvolution strategy of ABPP and MS-CETSA. Mil Med Res, 9 (1) ( 2022), p. 30 DOI: 10.1111/nph.17759
[18]
W. Trager, J.B. Jensen. Human malaria parasites in continuous culture. Science, 193 (4254) ( 1976), pp. 673-675 DOI: 10.1126/science.781840
[19]
M. Toro-Moreno, K. Sylvester, T. Srivastava, D. Posfai, E.R. Derbyshire. RNA-seq analysis illuminates the early stages of plasmodium liver infection. MBio, 11 (1) ( 2020), Article e03234-19
[20]
C. Giannangelo, G. Siddiqui, A. De Paoli, B.M. Anderson, L.E. Edgington-Mitchell, S.A. Charman, et al.. System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion. PLoS Pathog, 16 (6) ( 2020), Article e1008485 DOI: 10.1371/journal.ppat.1008485
[21]
S. Percário, D.R. Moreira, B.A. Gomes, M.E. Ferreira, A.C. Gonçalves, P.S. Laurindo, et al.. Oxidative stress in malaria. Int J Mol Sci, 13 (12) ( 2012), pp. 16346-16372 DOI: 10.3390/ijms131216346
[22]
K. Becker, L. Tilley, J.L. Vennerstrom, D. Roberts, S. Rogerson, H. Ginsburg. Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol, 34 (2) ( 2004), pp. 163-189
[23]
S. Müller. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol, 53 (5) ( 2004), pp. 1291-1305
[24]
K. Feld, F. Geissel, L. Liedgens, R. Schumann, S. Specht, M. Deponte.Tyrosine substitution of a conserved active-site histidine residue activates Plasmodium falciparum peroxiredoxin 6. Protein Sci, 28 (1) ( 2019), pp. 100-110 DOI: 10.1002/pro.3490
[25]
C. Brandstaedter, C. Delahunty, S. Schipper, S. Rahlfs, J.R.Yates 3rd, K. Becker. The interactome of 2-Cys peroxiredoxins in Plasmodium falciparum. Sci Rep, 9 (1) ( 2019), Article 13542
[26]
S.E. Akerman, S. Müller. 2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. Mol Biochem Parasitol, 130 (2) ( 2003), pp. 75-81
[27]
K. Komaki-Yasuda, S. Kawazu, S. Kano. Disruption of the Plasmodium falciparum 2-Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen species. FEBS Lett, 547 (1-3) ( 2003), pp. 140-144
[28]
S. Kawazu, N. Ikenoue, H. Takemae, K. Komaki-Yasuda, S. Kano.Roles of 1-Cys peroxiredoxin in haem detoxification in the human malaria parasite Plasmodium falciparum. FEBS J, 272 (7) ( 2005), pp. 1784-1791
CrossRef Google scholar
[29]
H. Deng, Q. Lei, Y. Wu, Y. He, W. Li. Activity-based protein profiling: recent advances in medicinal chemistry. Eur J Med Chem, 191 (2020), Article 112151
[30]
S. Krishna, A.C. Uhlemann, R.K. Haynes. Artemisinins: mechanisms of action and potential for resistance. Drug Resist Updat, 7 (4-5) ( 2004), pp. 233-244
[31]
B. Meunier, A. Robert. Heme as trigger and target for trioxane-containing antimalarial drugs. Acc Chem Res, 43 (11) ( 2010), pp. 1444-1451 DOI: 10.1021/ar100070k
[32]
S. Besteiro, S. Vo Duy, C. Perigaud, I. Lefebvre-Tournier, H.J. Vial. Exploring metabolomic approaches to analyse phospholipid biosynthetic pathways in Plasmodium. Parasitology, 137 (9) ( 2010), pp. 1343-1356
[33]
C. Ben Mamoun, S.T. Prigge, H. Vial. Targeting the lipid metabolic pathways for the treatment of malaria. Drug Dev Res, 71 (1) ( 2010), pp. 44-55 DOI: 10.1002/ddr.20347
[34]
G. Pessi, G. Kociubinski, C.B. Mamoun. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc Natl Acad Sci USA, 101 (16) ( 2004), pp. 6206-6211
[35]
A. Garg, T. Lukk, V. Kumar, J.Y. Choi, Y. Augagneur, D.R. Voelker, et al.. Structure, function and inhibition of the phosphoethanolamine methyltransferases of the human malaria parasites Plasmodium vivax and Plasmodium knowlesi. Sci Rep, 5 (1) ( 2015), Article 9064
[36]
A.M. Bobenchik, W.H. Witola, Y. Augagneur, L. Nic Lochlainn, A. Garg, N. Pachikara, et al.. Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission. Proc Natl Acad Sci USA, 110 (45) ( 2013), pp. 18262-18267 DOI: 10.1073/pnas.1313965110
[37]
N.M.B. Brancucci, J.P. Gerdt, C. Wang, M. De Niz, N. Philip, S.R. Adapa, et al.. Lysophosphatidylcholine regulates sexual stage differentiation in the human malaria parasite Plasmodium falciparum. Cell, 171 (7) ( 2017), pp. 1532-1544,e15
[38]
J. Singh, R. Mansuri, S. Vijay, G.C. Sahoo, A. Sharma, M. Kumar. Docking predictions based Plasmodium falciparum phosphoethanolamine methyl transferase inhibitor identification and in-vitro antimalarial activity analysis. BMC Chem, 13 (1) ( 2019), p. 43
[39]
L. Serrán-Aguilera, H. Denton, B. Rubio-Ruiz, B. López-Gutiérrez, A. Entrena, L. Izquierdo, et al.. Plasmodium falciparum choline kinase inhibition leads to a major decrease in phosphatidylethanolamine causing parasite death. Sci Rep, 6 (1) ( 2016), Article 33189
[40]
S. Déchamps, S. Shastri, K. Wengelnik, H.J. Vial. Glycerophospholipid acquisition in Plasmodium—a puzzling assembly of biosynthetic pathways. Int J Parasitol, 40 (12) ( 2010), pp. 1347-1365
[41]
W.H. Witola, K. El Bissati, G. Pessi, C. Xie, P.D. Roepe, C.B. Mamoun. Disruption of the Plasmodium falciparum PfPMT gene results in a complete loss of phosphatidylcholine biosynthesis via the serine-decarboxylase-phosphoethanolamine-methyltransferase pathway and severe growth and survival defects. J Biol Chem, 283 (41) ( 2008), pp. 27636-27643
[42]
R. Vinkenoog, M.A. Sperança, O. van Breemen, J. Ramesar, D.H. Williamson, P.B. Ross-MacDonald, et al.. Malaria parasites contain two identical copies of an elongation factor 1 alpha gene. Mol Biochem Parasitol, 94 (1) ( 1998), pp. 1-12
[43]
J. Wang, J. Zhang, Y.M. Lee, S. Ng, Y. Shi, Z.C. Hua, et al.. Nonradioactive quantification of autophagic protein degradation with L-azidohomoalanine labeling. Nat Protoc, 12 (2) ( 2017), pp. 279-288
[44]
S. Slavkovic, A.A. Shoara, Z.R. Churcher, E. Daems, K. de Wael, F. Sobott, et al.. DNA binding by the antimalarial compound artemisinin. Sci Rep, 12 (1) ( 2022), Article 133
[45]
A. Mbengue, S. Bhattacharjee, T. Pandharkar, H. Liu, G. Estiu, R.V. Stahelin, et al.. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 520 (7549) ( 2015), pp. 683-687 DOI: 10.1038/nature14412
[46]
J. Wang, C. Xu, Z.R. Lun, S.R. Meshnick. Unpacking ‘artemisinin resistance’. Trends Pharmacol Sci, 38 (6) ( 2017), pp. 506-511
[47]
J. Wang, C. Xu, F.L. Liao, T. Jiang, S. Krishna, Y. Tu. A temporizing solution to “artemisinin resistance”. N Engl J Med, 380 (22) ( 2019), pp. 2087-2089 DOI: 10.1056/nejmp1901233
Funding
the National Key Research and Development Program of China(2020YFA0908000, 2022YFC2303600); the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202002); the National Natural Science Foundation of China(82141001, 82274182, 82074098, 82003814, 82173914); the China Academy of Chinese Medical Sciences (CACMS) Innovation Fund(CI2021A05104, CI2021A05101); the Distinguished Expert Project of Sichuan Province Tianfu Scholar(CW202002); the Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences(CI2021B014); the China Postdoctoral Science Foundation(2022M721541); the Establishment of Sino-Austria “Belt and Road” Joint Laboratory on Traditional Chinese Medicine for Severe Infectious Diseases and Joint Research(2020YFE0205100); the Excellent Scientific and Technological Innovation Training Program of Shenzhen(RCYX20210706092040048); the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ14-YQ-051, ZZ14-YQ-052, ZZ14-FL-002, ZZ14-YQ-050, ZZ14-ND-010, ZZ15-ND-10); the Introduce Innovative Team Projects of Jinan(202228029)
AI Summary AI Mindmap
PDF(4703 KB)

Accesses

Citations

Detail

Sections
Recommended

/