Intestinal Epithelial Axin1 Deficiency Protects Against Colitis via Altered Gut Microbiota

Shari Garrett, Yongguo Zhang, Yinglin Xia, Jun Sun

Engineering ›› 2024, Vol. 35 ›› Issue (4) : 241-256.

PDF(6810 KB)
PDF(6810 KB)
Engineering ›› 2024, Vol. 35 ›› Issue (4) : 241-256. DOI: 10.1016/j.eng.2023.06.007
Research
Article

Intestinal Epithelial Axin1 Deficiency Protects Against Colitis via Altered Gut Microbiota

Author information +
History +

Abstract

Intestinal homeostasis is maintained by specialized host cells and the gut microbiota. Wnt/β-catenin signaling is essential for gastrointestinal development and homeostasis, and its dysregulation has been implicated in inflammation and colorectal cancer. Axin1 negatively regulates activated Wnt/β-catenin signaling, but little is known regarding its role in regulating host-microbial interactions in health and disease. Here, we aim to demonstrate that intestinal Axin1 determines gut homeostasis and host response to inflammation. Axin1 expression was analyzed in human inflammatory bowel disease datasets. To explore the effects and mechanism of intestinal Axin1 in regulating intestinal homeostasis and colitis, we generated new mouse models with Axin1 conditional knockout in intestinal epithelial cell (IEC; Axin1ΔIEC) and Paneth cell (PC; Axin1ΔPC) to compare with control (Axin1LoxP; LoxP: locus of X-over, P1) mice. We found increased Axin1 expression in the colonic epithelium of human inflammatory bowel disease (IBD). Axin1ΔIEC mice exhibited altered goblet cell spatial distribution, PC morphology, reduced lysozyme expression, and enriched Akkermansia muciniphila (A. muciniphila). The absence of intestinal epithelial and PC Axin1 decreased susceptibility to dextran sulfate sodium (DSS)-induced colitis in vivo. Axin1ΔIEC and Axin1ΔPC mice became more susceptible to DSS-colitis after cohousing with control mice. Treatment with A. muciniphila reduced DSS-colitis severity. Antibiotic treatment did not change the IEC proliferation in the Axin1Loxp mice. However, the intestinal proliferative cells in Axin1ΔIEC mice with antibiotic treatment were reduced compared with those in Axin1ΔIEC mice without treatment. These data suggest non-colitogenic effects driven by the gut microbiome. In conclusion, we found that the loss of intestinal Axin1 protects against colitis, likely driven by epithelial Axin1 and Axin1-associated A. muciniphila. Our study demonstrates a novel role of Axin1 in mediating intestinal homeostasis and the microbiota. Further mechanistic studies using specific Axin1 mutations elucidating how Axin1 modulates the microbiome and host inflammatory response will provide new therapeutic strategies for human IBD.

Graphical abstract

Keywords

Axin1 / Bacteria / Microbiome inflammation / Inflammatory bowel disease / Immunity / Microbiome / Paneth cells / Akkermansia muciniphila / Wnt

Cite this article

Download citation ▾
Shari Garrett, Yongguo Zhang, Yinglin Xia, Jun Sun. Intestinal Epithelial Axin1 Deficiency Protects Against Colitis via Altered Gut Microbiota. Engineering, 2024, 35(4): 241‒256 https://doi.org/10.1016/j.eng.2023.06.007

References

[1]
S. Alatab, S.G. Sepanlou, K. Ikuta, H. Vahedi, C. Bisignano, S. Safiri, et al. GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol, 5 (1) (2020), pp. 17-30.
[2]
D. Alshehri, O. Saadah, M. Mosli, S. Edris, R. Alhindi, A. Bahieldin. Dysbiosis of gut microbiota in inflammatory bowel disease: current therapies and potential for microbiota-modulating therapeutic approaches. Bosn J Basic Med Sci, 21 (3) (2021), pp. 270-283.
[3]
E.M. Schatoff, B.I. Leach, L.E. Dow. Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep, 13 (2) (2017), pp. 101-110.
[4]
L. Moparthi, S. Koch. Wnt signaling in intestinal inflammation. Differentiation, 108 (2019), pp. 24-32.
[5]
T.S. Gujral, E.S. Karp, M. Chan, B.H. Chang, G. MacBeath. Family-wide investigation of PDZ domain-mediated protein-protein interactions implicates β-catenin in maintaining the integrity of tight junctions. Chem Biol, 20 (6) (2013), pp. 816-827.
[6]
A. Serafino, N. Moroni, M. Zonfrillo, F. Andreola, L. Mercuri, G. Nicotera, et al. WNT-pathway components as predictive markers useful for diagnosis, prevention and therapy in inflammatory bowel disease and sporadic colorectal cancer. Oncotarget, 5 (4) (2014), pp. 978-992.
[7]
S. Amit, A. Hatzubai, Y. Birman, J.S. Andersen, E. Ben-Shushan, M. Mann, et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev, 16 (9) (2002), pp. 1066-1076.
[8]
R. Xie, R. Jiang, D. Chen. Generation of Axin1 conditional mutant mice. Genesis, 49 (2) (2011), pp. 98-102.
[9]
H.K. Arnold, X. Zhang, C.J. Daniel, D. Tibbitts, J. Escamilla-Powers, A. Farrell, et al. The Axin 1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J, 28 (5) (2009), pp. 500-512.
[10]
M. Gavagan, E. Fagnan, E.B. Speltz, J.G. Zalatan. The scaffold protein Axin promotes signaling specificity within the Wnt pathway by suppressing competing kinase reactions. Cell Syst, 10 (6) (2020), pp. 515-525 e5.
[11]
A. Kikuchi. Roles of Axin in the Wnt signalling pathway. Cell Signal, 11 (11) (1999), pp. 777-788.
[12]
Y.G. Zhang, S. Wu, Y. Xia, D. Chen, E.O. Petrof, E.C. Claud, et al. Axin 1 prevents Salmonella invasiveness and inflammatory response in intestinal epithelial cells. PLoS One, 7 (4) (2012), e34932.
[13]
U. Erben, C. Loddenkemper, K. Doerfel, S. Spieckermann, D. Haller, M.M. Heimesaat, et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol, 7 (8) (2014), pp. 4557-4576.
[14]
T.E. Adolph, M.F. Tomczak, L. Niederreiter, H.J. Ko, J. Böck, E. Martinez-Naves, et al. Paneth cells as a site of origin for intestinal inflammation. Nature, 503 (7475) (2013), pp. 272-276.
[15]
R. Lu, Y.G. Zhang, Y. Xia, J. Zhang, A. Kaser, R. Blumberg, et al. Paneth cell alertness to pathogens maintained by vitamin D receptors. Gastroenterology, 160 (4) (2021), pp. 1269-1283.
[16]
S. Wu, S. Yoon, Y.G. Zhang, R. Lu, Y. Xia, J. Wan, et al. Vitamin D receptor pathway is required for probiotic protection in colitis. Am J Physiol Gastrointest Liver Physiol, 309 (5) (2015), pp. G341-G349.
[17]
S. Wu, Y.G. Zhang, R. Lu, Y. Xia, D. Zhou, E.O. Petrof, et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut, 64 (7) (2015), pp. 1082-1094.
[18]
Y.G. Zhang, X. Zhu, R. Lu, J.S. Messer, Y. Xia, E.B. Chang, et al. Intestinal epithelial HMGB 1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy, 15 (11) (2019), pp. 1935-1953.
[19]
Y.G. Zhang, R. Lu, S. Wu, I. Chatterjee, D. Zhou, Y. Xia, et al. Vitamin D receptor protects against dysbiosis and tumorigenesis via the JAK/STAT pathway in intestine. Cell Mol Gastroenterol Hepatol, 10 (4) (2020), pp. 729-746.
[20]
A.T. Feldman, D. Wolfe. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol, 1180 (2014), pp. 31-43.
[21]
S. Wu, A.P. Liao, Y. Xia, Y.C. Li, J.D. Li, R.B. Sartor, et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-κB activity in intestine. Am J Pathol, 177 (2) (2010), pp. 686-697.
[22]
D. Jin, Y.G. Zhang, S. Wu, R. Lu, Z. Lin, Y. Zheng, et al. Vitamin D receptor is a novel transcriptional regulator for Axin1. J Steroid Biochem Mol Biol, 165 (Pt B) (2017), pp. 430-437.
[23]
H. Chen, R. Lu, Y.G. Zhang, J. Sun. Vitamin D receptor deletion leads to the destruction of tight and adherens junctions in lungs. Tissue Barriers, 6 (4) (2018), pp. 1-13.
[24]
K.W. Cheon, H.S. Lee, I.S. Parhar, I.S. Kang. Expression of the second isoform of gonadotrophin-releasing hormone (GnRH-II) in human endometrium throughout the menstrual cycle. Mol Hum Reprod, 7 (5) (2001), pp. 447-452.
[25]
Y. Zhang, J. Zhang, Y. Xia, J. Sun. Bacterial translocation and barrier dysfunction enhance colonic tumorigenesis. Neoplasia, 35 (2023), 100847.
[26]
T.C. Liu, B. Gurram, M.T. Baldridge, R. Head, V. Lam, C. Luo, et al. Paneth cell defects in Crohn’s disease patients promote dysbiosis. JCI Insight, 1 (8) (2016), e86907.
[27]
J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7 (5) (2010), pp. 335-336.
[28]
D. McDonald, M.N. Price, J. Goodrich, E.P. Nawrocki, T.Z. DeSantis, A. Probst, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J, 6 (3) (2012), pp. 610-618.
[29]
Y. Xia, J. Sun, D.G. Chen. Statistical analysis of microbiome data with R. Springer, Singapore (2018).
[30]
N.S. Armbruster, E.F. Stange, J. Wehkamp. In the Wnt of Paneth cells: immune-epithelial crosstalk in small intestinal Crohn’s disease. Front Immunol, 8 (2017), 1204.
[31]
P. Paone, P.D. Cani. Mucus barrier, mucins and gut microbiota: the expected slimy partners?. Gut, 69 (12) (2020), pp. 2232-2243.
[32]
X. Bian, W. Wu, L. Yang, L. Lv, Q. Wang, Y. Li, et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol, 10 (2019), 2259.
[33]
S.R. Lueschow, J. Stumphy, H. Gong, S.L. Kern, T.G. Elgin, M.A. Underwood, et al. Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis. PLoS One, 13 (10) (2018), e0204967.
[34]
S. Yu, I. Balasubramanian, D. Laubitz, K. Tong, S. Bandyopadhyay, X. Lin, et al. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the intestine. Immunity, 53 (2) (2020), pp. 398-416 e8.
[35]
J. Beisner, Z. Teltschik, M.J. Ostaff, M.M. Tiemessen, F.J.T. Staal, G. Wang, et al. TCF-1-mediated Wnt signaling regulates Paneth cell innate immune defense effectors HD-5 and -6: implications for Crohn’s disease. Am J Physiol Gastrointest Liver Physiol, 307 (5) (2014), pp. G487-G498.
[36]
J. Berlanga-Acosta, R.J. Playford, N. Mandir, R.A. Goodlad. Gastrointestinal cell proliferation and crypt fission are separate but complementary means of increasing tissue mass following infusion of epidermal growth factor in rats. Gut, 48 (6) (2001), pp. 803-807.
[37]
S. Roth, P. Franken, A. Sacchetti, A. Kremer, K. Anderson, O. Sansom, et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS One, 7 (6) (2012), e38965.
[38]
T. Sato, J.H. van Es, H.J. Snippert, D.E. Stange, R.G. Vries, M. van den Born, et al. Paneth cells constitute the niche for Lgr 5 stem cells in intestinal crypts. Nature, 469 (7330) (2011), pp. 415-418.
[39]
X. Mei, M. Gu, M. Li. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther, 11 (1) (2020), 349.
[40]
R. Yazbeck, G.S. Howarth, R.N. Butler, M.S. Geier, C.A. Abbott. Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium colitis. J Cell Physiol, 226 (12) (2011), pp. 3219-3224.
[41]
J.M. Kim. Antimicrobial proteins in intestine and inflammatory bowel diseases. Intest Res, 12 (1) (2014), pp. 20-33.
[42]
L. Moraes, M.K. Magnusson, G. Mavroudis, A. Polster, B. Jonefjäll, H. Törnblom, et al. Systemic inflammatory protein profiles distinguish irritable bowel syndrome (IBS) and ulcerative colitis, irrespective of inflammation or IBS-like symptoms. Inflamm Bowel Dis, 26 (6) (2020), pp. 874-884.
[43]
E.M. Bradford, S.H. Ryu, A.P. Singh, G. Lee, T. Goretsky, P. Sinh, et al. Epithelial TNF receptor signaling promotes mucosal repair in inflammatory bowel disease. J Immunol, 199 (5) (2017), pp. 1886-1897.
[44]
W. Luo, S.C. Lin. Axin: a master scaffold for multiple signaling pathways. Neurosignals, 13 (3) (2004), pp. 99-113.
[45]
M. Furuhashi, K. Yagi, H. Yamamoto, Y. Furukawa, S. Shimada, Y. Nakamura, et al. Axin facilitates Smad 3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol, 21 (15) (2001), pp. 5132-5141.
[46]
S. Salahshor, J.R. Woodgett. The links between Axin and carcinogenesis. J Clin Pathol, 58 (3) (2005), pp. 225-236.
[47]
Y. Zhang, S.Y. Neo, X. Wang, J. Han, S.C. Lin. Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling. J Biol Chem, 274 (49) (1999), pp. 35247-35254.
[48]
C. Harnack, H. Berger, A. Antanaviciute, R. Vidal, S. Sauer, A. Simmons, et al. R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nat Commun, 10 (1) (2019), 4368.
[49]
C.W. Png, S.K. Lindén, K.S. Gilshenan, E.G. Zoetendal, C.S. McSweeney, L.I. Sly, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol, 105 (11) (2010), pp. 2420-2428.
[50]
M. Rajilić-Stojanović, F. Shanahan, F. Guarner, W.M. de. Vos. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis, 19 (3) (2013), pp. 481-488.
[51]
Y. Xu, N. Wang, H.Y. Tan, S. Li, C. Zhang, Y. Feng. Function of Akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front Microbiol, 11 (2020), 219.
[52]
C.T. Shih, Y.T. Yeh, C.C. Lin, L.Y. Yang, C.P. Chiang. Akkermansia muciniphila is negatively correlated with hemoglobin A1c in refractory diabetes. Microorganisms, 8 (9) (2020), 1360.
[53]
T. Zhang, P. Li, X. Wu, G. Lu, C. Marcella, X. Ji, et al. Alterations of Akkermansia muciniphila in the inflammatory bowel disease patients with washed microbiota transplantation. Appl Microbiol Biotechnol, 104 (23) (2020), pp. 10203-10215.
[54]
S. Zhao, W. Liu, J. Wang, J. Shi, Y. Sun, W. Wang, et al. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol, 58 (1) (2017), pp. 1-14.
[55]
A. Everard, C. Belzer, L. Geurts, J.P. Ouwerkerk, C. Druart, L.B. Bindels, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA, 110 (22) (2013), pp. 9066-9071.
[56]
M. Derrien, P. Van Baarlen, G. Hooiveld, E. Norin, M. Müller, W.M. de. Vos. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol, 2 (2011), 166.
[57]
J. Fang, H. Wang, Y. Zhou, H. Zhang, H. Zhou, X. Zhang. Slimy partners: the mucus barrier and gut microbiome in ulcerative colitis. Exp Mol Med, 53 (5) (2021), pp. 772-787.
[58]
M. Van der Sluis, B.A.E. de Koning, A.C.J.M. de Bruijn, A. Velcich, J.P.P. Meijerink, J.B. van Goudoever, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC 2 is critical for colonic protection. Gastroenterology, 131 (1) (2006), pp. 117-129.
[59]
L.Y. Pei, Y.S. Ke, H.H. Zhao, L. Wang, C. Jia, W.Z. Liu, et al. Role of colonic microbiota in the pathogenesis of ulcerative colitis. BMC Gastroenterol, 19 (1) (2019), 10.
[60]
Y. Nishihara, H. Ogino, M. Tanaka, E. Ihara, K. Fukaura, K. Nishioka, et al. Mucosa-associated gut microbiota reflects clinical course of ulcerative colitis. Sci Rep, 11 (1) (2021), 13743.
[61]
P.M. Munyaka, M.F. Rabbi, E. Khafipour, J.E. Ghia. Acute dextran sulfate sodium (DSS)-induced colitis promotes gut microbial dysbiosis in mice. J Basic Microbiol, 56 (9) (2016), pp. 986-998.
[62]
Z. Gao, K.Y. Chen, O. Mueller, H. Zhang, N. Rakhilin, J. Chen, et al. Microbiota of inflammatory bowel disease models. Annu Int Conf IEEE Eng Med Biol Soc, 2018 (2018), pp. 2374-2377.
[63]
A. Lo Presti, F. Zorzi, F. Del Chierico, A. Altomare, S. Cocca, A. Avola, et al. Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front Microbiol, 10 (2019), 1655.
[64]
G.P. Donaldson, S.M. Lee, S.K. Mazmanian. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol, 14 (1) (2016), pp. 20-32.
AI Summary AI Mindmap
PDF(6810 KB)

Accesses

Citations

Detail

Sections
Recommended

/