A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications

Yixing Wan, Yanhai Cheng, Yongxiong Chen, Zhibin Zhang, Yanan Liu, Haijun Gong, Baolong Shen, Xiubing Liang

Engineering ›› 2023, Vol. 30 ›› Issue (11) : 110-120.

PDF(3307 KB)
PDF(3307 KB)
Engineering ›› 2023, Vol. 30 ›› Issue (11) : 110-120. DOI: 10.1016/j.eng.2023.06.008
Research
Article

A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications

Author information +
History +

Abstract

Refractory high-entropy alloys (RHEAs) have promising applications as the new generation of high-temperature alloys in hypersonic vehicles, aero-engines, gas turbines, and nuclear power plants. This study focuses on the microstructures and mechanical properties of the NbMoTaW(HfN)x (x = 0, 0.3, 0.7, and 1.0) RHEAs. The alloys consist of multiple phases of body-centered cubic (BCC), hafnium nitride (HfN), or multicomponent nitride (MN) phases. As the x contents increase, the grain size becomes smaller, and the strength gradually increases. The compressive yield strengths of the NbMoTaWHfN RHEA at ambient temperature, 1000, 1400, and 1800 °C were found to be 1682, 1192, 792, and 288 MPa, respectively. The high-temperature strength of this alloy is an inspiring result that exceeds the high temperature and strength of most known alloys, including high-entropy alloys, refractory metals, and superalloys. The HfN phase has a significant effect on strengthening due to its high structural stability and sluggish grain coarsening, even at ultra-high temperatures. Its superior properties endow the NbMoTaWHfN RHEA with potential for a wide range of engineering applications at ultra-high temperatures. This work offers a strategy for the design of high-temperature alloys and proposes an ultra-high-temperature alloy with potential for future engineering applications.

Graphical abstract

Keywords

Refractory high-entropy alloy / High temperature / Mechanical property / Microstructure / Strengthening mechanism

Cite this article

Download citation ▾
Yixing Wan, Yanhai Cheng, Yongxiong Chen, Zhibin Zhang, Yanan Liu, Haijun Gong, Baolong Shen, Xiubing Liang. A Nitride-Reinforced NbMoTaWHfN Refractory High-Entropy Alloy with Potential Ultra-High-Temperature Engineering Applications. Engineering, 2023, 30(11): 110‒120 https://doi.org/10.1016/j.eng.2023.06.008

References

[1]
S. Wu, D. Qiao, H. Zhang, J. Miao, H. Zhao, J. Wang, et al.. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures. J Mater Sci Technol, 97 ( 2022), pp. 229-238 DOI: 10.1117/12.2662625
[2]
Z. Wang, H. Wu, Y. Wu, H. Huang, X. Zhu, Y. Zhang, et al.. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Mater Today, 54 ( 2022), pp. 83-89
[3]
R. Feng, B. Feng, M.C. Gao, C. Zhang, J.C. Neuefeind, J.D. Poplawsky, et al.. Superior high-temperature strength in a supersaturated refractory high-entropy alloy. Adv Mater, 33 (48) ( 2021), p. 2102401
[4]
Q. Wei, X. Xu, Q. Shen, G. Luo, J. Zhang, J. Li, et al.. Metal-carbide eutectics with multiprincipal elements make superrefractory alloys. Sci Adv, 8 (27) ( 2022), p. eabo2068
[5]
O. Uyanna, H. Najafi. Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects. Acta Astronaut, 176 ( 2020), pp. 341-356
[6]
S. Zhang, X. Li, J. Zuo, J. Qin, K. Cheng, Y. Feng, et al.. Research progress on active thermal protection for hypersonic vehicles. Prog Aerosp Sci, 119 ( 2020), p. 100646
[7]
A. Pineau, S.D. Antolovich. High temperature fatigue of nickel-base superalloys—a review with special emphasis on deformation modes and oxidation. Eng Fail Anal, 16 (8) ( 2009), pp. 2668-2697
[8]
D.B. Miracle, O.N. Senkov. A critical review of high entropy alloys and related concepts. Acta Mater, 122 ( 2017), pp. 448-511
[9]
Z.P. Wan, J.Y. Shen, T. Wang, K. Wei, Z. Li, S. Yan, et al.. Effect of hot deformation parameters on the dissolution of γ′ precipitates for as-cast Ni-based superalloys. J Mater Eng Perform, 31 (2) ( 2022), pp. 1594-1606 DOI: 10.1007/s11665-021-06276-0
[10]
X. Zhang, J. Tian, M. Xue, F. Jiang, S. Li, B. Zhang, et al.. Ta-W refractory alloys with high strength at 2000 °C. Acta Metall Sin, 58 (10) ( 2022), pp. 1253-1260 [Chinese].
[11]
J.P. Couzinié, O.N. Senkov, D.B. Miracle, G. Dirras. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys. Data Brief, 21 ( 2018), pp. 1622-1641
[12]
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw. Refractory high-entropy alloys. Intermetallics, 18 (9) ( 2010), pp. 1758-1765
[13]
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19 (5) ( 2011), pp. 698-706
[14]
Y. Wan, J. Mo, X. Wang, Z. Zhang, B. Shen, X. Liang. Mechanical properties and phase stability of WTaMoNbTi refractory high-entropy alloy at elevated temperatures. Acta Metall Sin, 34 (11) ( 2021), pp. 1585-1590 DOI: 10.1007/s40195-021-01263-9
[15]
J. Mo, Y. Wan, Z. Zhang, X. Wang, X. Li, B. Shen, et al.. First-principle prediction of structural and mechanical properties in NbMoTaWRex refractory high-entropy alloys with experimental validation. Rare Met, 41 (10) ( 2022), pp. 3343-3350 DOI: 10.1007/s12598-022-02054-6
[16]
O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci, 47 (9) ( 2012), pp. 4062-4074 DOI: 10.1007/s10853-012-6260-2
[17]
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, et al.. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater Des, 81 ( 2015), pp. 87-94
[18]
Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, et al.. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater Sci Eng A, 712 ( 2018), pp. 380-385
[19]
Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, et al.. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 84 ( 2017), pp. 153-157
[20]
Y. Wan, Q. Wang, J. Mo, Z. Zhang, X. Wang, X. Liang, et al.. WReTaMo refractory high-entropy alloy with high strength at 1600 °C. Adv Eng Mater, 24 (2) ( 2022), p. 2100765
[21]
Y. Wan. Study on the preparation and mechanical properties of rare metals Nb/Mo/Ta/W based ultra-high-temperature high-entropy alloys [dissertation]. China University of Mining and Technology, Xuzhou ( 2021) [Chinese].
[22]
Z. Guo, A. Zhang, J. Han, J. Meng. Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys. J Mater Sci, 54 (7) ( 2019), pp. 5844-5851 DOI: 10.1007/s10853-018-03280-z
[23]
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, et al.. Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite. Intermetallics, 69 ( 2016), pp. 74-77
[24]
Y. Wan, X. Wang, Z. Zhang, J. Mo, B. Shen, X. Liang. Structures and properties of the (NbMoTaW)100-xCx high-entropy composites. J Alloys Compd, 889 ( 2021), p. 161645
[25]
Q. Wei, Q. Shen, J. Zhang, Y. Zhang, G. Luo, L. Zhang. Microstructure evolution, mechanical properties and strengthening mechanism of refractory high-entropy alloy matrix composites with addition of TaC. J Alloys Compd, 777 ( 2019), pp. 1168-1175
[26]
R. Wang, Y. Tang, Z. Lei, Y. Ai, Z. Tong, S. Li, et al.. Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys. Mater Des, 213 ( 2022), p. 110356
[27]
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, et al.. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 563 (7732) ( 2018), pp. 546-550 DOI: 10.1038/s41586-018-0685-y
[28]
M. Wu, S. Li, D. Xu, H. Zhao. Mechanical properties of alloy Ta-10W at elevated temperature. Rare Met Mater Eng, 35 (z1) ( 2006), pp. 64-67 [Chinese].
[29]
O.N. Senkov, T.I. Daboiku, T.M. Butler, M.S. Titus, N.R. Philips, E.J. Payton. High-temperature mechanical properties and oxidation behavior of Hf-27Ta and Hf-21Ta-21X (X is Nb, Mo or W) alloys. Int J Refract Met Hard Mater, 96 ( 2021),105467
[30]
A. Takeuchi, A. Inoue. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 46 (12) ( 2005), pp. 2817-2829 DOI: 10.2320/matertrans.46.2817
[31]
A. Inoue, B.L. Shen. A new Fe-based bulk glassy alloy with outstanding mechanical properties. Adv Mater, 16 (23-24) ( 2004), pp. 2189-2192 DOI: 10.1002/adma.200400301
[32]
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang. High-entropy alloy: challenges and prospects. Mater Today, 19 (6) ( 2016), pp. 349-362
[33]
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr Mater, 68 (7) ( 2013), pp. 526-529
[34]
B. Kang, J. Lee, H.J. Ryu, S.H. Hong. Microstructure, mechanical property and Hall-Petch relationship of a light-weight refractory Al0.1CrNbVMo high entropy alloy fabricated by powder metallurgical process. J Alloys Compd, 767 ( 2018), pp. 1012-1021
[35]
S. Chen, K.K. Tseng, Y. Tong, W. Li, C.W. Tsai, J.W. Yeh, et al.. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J Alloys Compd, 795 ( 2019), pp. 19-26 DOI: 10.1007/978-3-030-03748-2_3
[36]
C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, et al.. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater, 160 ( 2018), pp. 158-172
[37]
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, et al.. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater, 102 ( 2016), pp. 187-196
[38]
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 10 (6) ( 2008), pp. 534-538 DOI: 10.1002/adem.200700240
[39]
O.N. Senkov, A.L. Pilchak, S.L. Semiatin. Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy. Metall Mater Trans A, 49 (7) ( 2018), pp. 2876-2892 DOI: 10.1007/s11661-018-4646-8
[40]
webelements.com [Internet]. Mark J Winter; c1993-2023 [cited 2023 Jan 16]. Available from: https://www.webelements.com/.
[41]
A.B. Melnick, V.K. Soolshenko. Thermodynamic design of high-entropy refractory alloys. J Alloys Compd, 694 ( 2017), pp. 223-227
[42]
chemicalbook.com [Internet]. Beijing: ChemicalBook; c2016-2021 [cited 2023 Jan 16]. Available from: https://www.chemicalbook.com/. [Chinese].
[43]
S. Gorsse, M.H. Nguyen, O.N. Senkov, D.B. Miracle. Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Brief, 21 ( 2018), pp. 2664-2678
[44]
E.P. George, D. Raabe, R.O. Ritchie. High-entropy alloys. Nat Rev Mater, 4 (8) ( 2019), pp. 515-534 DOI: 10.1038/s41578-019-0121-4
[45]
N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, et al.. High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater Sci Eng A, 636 ( 2015), pp. 188-195
[46]
S. Praveen, H.S. Kim. High-entropy alloys: potential candidates for high-temperature applications—an overview. Adv Eng Mater, 20 (1) ( 2018), p. 1700645
[47]
J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, et al.. A review on fundamental of high entropy alloys with promising high-temperature properties. J Alloys Compd, 760 ( 2018), pp. 15-30
[48]
G. Choubey, D. Yuvarajan, W. Huang, A. Shafee, K.M. Pandey. Recent research progress on transverse injection technique for scramjet applications—a brief review. Int J Hydrogen Energy, 45 (51) ( 2020), pp. 27806-27827
[49]
D. Ni, Y. Cheng, J. Zhang, J.X. Liu, J. Zou, B. Chen, et al.. Advances in ultra-high temperature ceramics, composites, and coatings. J Adv Ceram, 11 (1) ( 2022), pp. 1-56 DOI: 10.1007/s40145-021-0550-6
[50]
V.T. Le, N.S. Ha, N.S. Goo. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: a review. Compos Part B Eng, 226 ( 2021), p. 109301
[51]
H. González-Barrio, A. Calleja-Ochoa, A. Lamikiz, L.N. López de Lacalle. Manufacturing processes of integral blade rotors for turbomachinery, processes and new approaches. Appl Sci, 10 (9) ( 2020), p. 3063 DOI: 10.3390/app10093063
[52]
R. LeHolm, B. Norris, A. Gurney. High temperature alloys for aerospace structures. Adv Mater Process, 159 (5) ( 2001), pp. 27-31
Funding
the National Key Research and Development Program of China(2023YFE0201600, 2018YFC1902400); the National Natural Science Foundation of China(51975582); the Priority Academic Program Development of Jiangsu Higher Education Institutions
AI Summary AI Mindmap
PDF(3307 KB)

Accesses

Citations

Detail

Sections
Recommended

/