Buxu Tongyu Granule Alleviates Myocardial Ischemia by Activating Vascular Smooth Muscle Cell Soluble Guanylate Cyclase to Inhibit Abnormal Vasomotion

Shuang Yang, Yixiu Zhao, Xiaoling Cheng, Tingting Zhan, Jiaying Tian, Xue Liu, Chunyue Ma, Zhiqi Wang, Luying Jin, Qian Liu, Yanli Wang, Jian Huang, Jinhui Wang, Yan Zhang, Baofeng Yang

Engineering ›› 2024, Vol. 38 ›› Issue (7) : 133-143.

PDF(3082 KB)
PDF(3082 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 133-143. DOI: 10.1016/j.eng.2023.06.009
Research
Article

Buxu Tongyu Granule Alleviates Myocardial Ischemia by Activating Vascular Smooth Muscle Cell Soluble Guanylate Cyclase to Inhibit Abnormal Vasomotion

Author information +
History +

Abstract

Myocardial ischemia is a serious threat to human health, and vascular dysfunction is its main cause. Buxu Tongyu (BXTY) Granule is an effective traditional Chinese medicine (TCM) for treating myocardial ischemia. However, the underlying mechanism of BXTY is still unclear. In this study, we demonstrate that BXTY ameliorates myocardial ischemia by activating the soluble guanylate cyclase (sGC)-3′,5′-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling pathway in vascular smooth muscle cells (VSMCs) to dilate the arteries. BXTY was given by gavage for ten consecutive days before establishing an animal model of acute myocardial ischemia in mice via the intraperitoneal injection of pituitrin. The results showed that BXTY alleviated the symptoms of myocardial ischemia induced by pituitrin in mice, including electrocardiogram abnormalities and changes in plasma enzymes. In addition, BXTY dilated pre-constricted blood vessels and inhibited the vasoconstriction of the superior mesenteric artery in a dose-dependent but endothelial-independent manner. These effects were eliminated by pre-incubating vascular rings with the sGC inhibitors NS 2028 or ODQ, or with the PKG inhibitor KT 5823. Moreover, BXTY increased the protein expression of sGC-β1 and the intracellular second messenger cGMP level in mouse aortic vascular smooth muscle cells (MOVAs). NS 2028 or ODQ reversed these effects of BXTY. The expression level of the cGMP downstream effector protein PKG-1 increased after treating MOVAs with BXTY. NS 2028, ODQ, or KT 5823 also reversed this effect of BXTY. In conclusion, BXTY can improve the symptoms of acute myocardial ischemia in mice, and activating the sGC-cGMP-PKG pathway in VSMCs to induce vasodilation is its key pharmacodynamic mechanism.

Graphical abstract

Keywords

Myocardial ischemia / Vasomotion / Soluble guanylate cyclase / Buxu Tongyu Granule

Cite this article

Download citation ▾
Shuang Yang, Yixiu Zhao, Xiaoling Cheng, Tingting Zhan, Jiaying Tian, Xue Liu, Chunyue Ma, Zhiqi Wang, Luying Jin, Qian Liu, Yanli Wang, Jian Huang, Jinhui Wang, Yan Zhang, Baofeng Yang. Buxu Tongyu Granule Alleviates Myocardial Ischemia by Activating Vascular Smooth Muscle Cell Soluble Guanylate Cyclase to Inhibit Abnormal Vasomotion. Engineering, 2024, 38(7): 133‒143 https://doi.org/10.1016/j.eng.2023.06.009

References

[1]
R.V. Jensen, M.V. Hjortbak, H.E. Bøtker. Ischemic heart disease: an update. Semin Nucl Med, 50 (3) (2020), pp. 195-207
[2]
G. Lippi, M. Franchini, G. Cervellin. Diagnosis and management of ischemic heart disease. Semin Thromb Hemost, 39 (2) (2013), pp. 202-213
[3]
G.A. Roth, G.A. Mensah, C.O. Johnson, G. Addolorato, E. Ammirati, L.M. Baddour, et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol, 76 (25) (2020), pp. 2982-3021
[4]
J.C. Kaski, F. Crea, B.J. Gersh, P.G. Camici. Reappraisal of ischemic heart disease. Circulation, 138 (14) (2018), pp. 1463-1480
[5]
N. Waheed, S. Elias-Smale, W. Malas, A.H. Maas, T.L. Sedlak, J. Tremmel, et al. Sex differences in non-obstructive coronary artery disease. Cardiovasc Res, 116 (4) (2020), pp. 829-840
[6]
J.F. Beltrame. The emergence of the coronary vasomotor dysfunction era. Int J Cardiol, 254 (2018), pp. 43-44
[7]
J. Dean, S.D. Cruz, P.K. Mehta, C.N. Merz. Coronary microvascular dysfunction: sex-specific risk, diagnosis, and therapy. Nat Rev Cardiol, 12 (7) (2015), pp. 406-414
[8]
H. Chen, Y. Dong, X. He, J. Li, J. Wang. Paeoniflorin improves cardiac function and decreases adverse postinfarction left ventricular remodeling in a rat model of acute myocardial infarction. Drug Des Devel Ther, 12 (2018), pp. 823-836
[9]
H. Liu, W. Liu, H. Qiu, D. Zou, H. Cai, Q. Chen, et al. Salvianolic acid B protects against myocardial ischaemia-reperfusion injury in rats via inhibiting high mobility group box 1 protein expression through the PI3K/Akt signalling pathway. Naunyn Schmiedebergs Arch Pharmacol, 393 (8) (2020), pp. 1527-1539
[10]
W. Zhong, B. Sun, W. Gao, Y. Qin, H. Zhang, L. Huai, et al. Salvianolic acid A targeting the transgelin-actin complex to enhance vasoconstriction. EBioMedicine, 37 (2018), pp. 246-258
[11]
X.L. Tang, J.X. Liu, W. Dong, P. Li, L. Li, C.R. Lin, et al. Cardioprotective effect of protocatechuic acid on myocardial ischemia/reperfusion injury. J Pharmacol Sci, 125 (2) (2014), pp. 176-183
[12]
T.J. Ford, P. Ong, U. Sechtem, J. Beltrame, P.G. Camici, F. Crea, et al. COVADIS Study Group. Assessment of vascular dysfunction in patients without obstructive coronary artery disease: why, how, and when. JACC Cardiovasc Interv, 13 (16) (2020), pp. 1847-1864
[13]
T.J. Ford, D. Corcoran, C. Berry. Stable coronary syndromes: pathophysiology, diagnostic advances and therapeutic need. Heart, 104 (4) (2018), pp. 284-292
[14]
G. Wang, L. Jacquet, E. Karamariti, Q. Xu. Origin and differentiation of vascular smooth muscle cells. J Physiol, 593 (14) (2015), pp. 3013-3030
[15]
R.M. Touyz, R. Alves-Lopes, F.J. Rios, L.L. Camargo, A. Anagnostopoulou, A. Arner, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res, 114 (4) (2018), pp. 529-539
[16]
M. Yu, L. Peng, P. Liu, M. Yang, H. Zhou, Y. Ding, et al. Paeoniflorin ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition. Drug Des Devel Ther, 14 (2020), pp. 1191-1202
[17]
Q. Shou, Y. Pan, X. Xu, J. Xu, D. Wang, Y. Ling, et al. Salvianolic acid B possesses vasodilation potential through NO and its related signals in rabbit thoracic aortic rings. Eur J Pharmacol, 697 (1-3) (2012), pp. 81-87
[18]
S.B. Wang, X.Y. Yang, S. Tian, H.G. Yang, G.H. Du. Effect of salvianolic acid A on vascular reactivity of streptozotocin-induced diabetic rats. Life Sci, 85 (13-14) (2009), pp. 499-504
[19]
Y.A. El-Sonbaty, G.M. Suddek, N. Megahed, N.M. Gameil. Protocatechuic acid exhibits hepatoprotective, vasculoprotective, antioxidant and insulin-like effects in dexamethasone-induced insulin-resistant rats. Biochimie, 167 (2019), pp. 119-134
[20]
H.K. Surks. cGMP-dependent protein kinase I and smooth muscle relaxation: a tale of two isoforms. Circ Res, 101 (11) (2007), pp. 1078-1080
[21]
K.H. Lee, S.R. Lee, H. Cho, J.S. Woo, J.H. Kang, Y.M. Jeong, et al. Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts. PLoS One, 12 (7) (2017), Article e0180207
[22]
P.M. Vanhoutte, Y. Zhao, A. Xu, S.W. Leung. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res, 119 (2) (2016), pp. 375-396
[23]
P. Sandner, M. Follmann, E. Becker-Pelster, M.G. Hahn, C. Meier, C. Freitas, et al. Soluble GC stimulators and activators: past, present and future. Br J Pharmacol (2021), p. bph.15698
[24]
T.L. Poulos. Soluble guanylate cyclase. Curr Opin Struct Biol, 16 (6) (2006), pp. 736-743
[25]
B.G. Durgin, S.A. Hahn, H.M. Schmidt, M.P. Miller, N. Hafeez, I. Mathar, et al. Loss of smooth muscle CYB5R3 amplifies angiotensin II-induced hypertension by increasing sGC heme oxidation. JCI Insight, 4 (19) (2019), Article e129183
[26]
D. Dou, X. Zheng, L. Ying, L. Ye, Y. Gao. Sulfhydryl-dependent dimerization and cGMP-mediated vasodilatation. J Cardiovasc Pharmacol, 62 (1) (2013), pp. 1-5
[27]
J.P. Stasch, P. Pacher, O.V. Evgenov. Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation, 123 (20) (2011), pp. 2263-2273
[28]
P. Sandner, D.P. Zimmer, G.T. Milne, M. Follmann, A. Hobbs, J.P. Stasch. Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol, 264 (2021), pp. 355-394
[29]
B.G. Horst, M.A. Marletta. Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide, 77 (2018), pp. 65-74
[30]
H.A. Ghofrani, N. Galiè, F. Grimminger, E. Grünig, M. Humbert, Z.C. Jing, et al. PATENT-1 Study Group. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med, 369 (4) (2013), pp. 330-340
[31]
M. Guha. First-in-class guanylate cyclase stimulator approved for PAH. Nat Biotechnol, 31 (12) (2013), p. 1064
[32]
P.W. Armstrong, B. Pieske, K.J. Anstrom, J. Ezekowitz, A.F. Hernandez, J. Butler, et al.VICTORIA Study Group. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med, 382 (20) (2020), pp. 1883-1893
[33]
J.C. Burnett Jr.. Vericiguat—another victory for targeting cyclic GMP in heart failure. N Engl J Med, 382 (20) (2020), pp. 1952-1953
[34]
G.I. Makrynitsa, A.A. Zompra, A.I. Argyriou, G.A. Spyroulias, S. Topouzis. Therapeutic targeting of the soluble guanylate cyclase. Curr Med Chem, 26 (15) (2019), pp. 2730-2747
[35]
W.F. Jackson. Calcium-dependent ion channels and the regulation of arteriolar myogenic tone. Front Physiol, 12 (2021), Article 770450
AI Summary AI Mindmap
PDF(3082 KB)

Accesses

Citations

Detail

Sections
Recommended

/