Optimal Design of Aperture Illuminations for Microwave Power Transmission with Annular Collection Areas

Xun Li, Baoyan Duan, Yiqun Zhang, Yongxin Guo

Engineering ›› 2023, Vol. 30 ›› Issue (11) : 63-74.

PDF(2836 KB)
PDF(2836 KB)
Engineering ›› 2023, Vol. 30 ›› Issue (11) : 63-74. DOI: 10.1016/j.eng.2023.07.016
Research
Article

Optimal Design of Aperture Illuminations for Microwave Power Transmission with Annular Collection Areas

Author information +
History +

Abstract

This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area. The objective is to maximize the ratio of the power radiated on the annular collection area to the total transmitted power. By formulating the aperture amplitude distribution through a summation of a special set of series, the optimal design problem can be reduced to finding the maximum ratio of two real quadratic forms. Based on the theory of matrices, the solution to the formulated optimization problem is to determine the largest characteristic value and its associated characteristic vector. To meet security requirements, the peak radiation levels outside the receiving area are considered to be extra constraints. A hybrid grey wolf optimizer and Nelder-Mead simplex method is developed to deal with this constrained optimization problem. In order to demonstrate the effectiveness of the proposed method, numerical experiments on continuous apertures are conducted; then, discrete arrays of isotropic elements are employed to validate the correctness of the optimized results. Finally, patch arrays are adopted to further verify the validity of the proposed method.

Graphical abstract

Keywords

Microwave power transmission / Beam collection efficiency / Ring-shaped beam / Annular collection area / Grey wolf optimizer / Nelder-Mead simplex method

Cite this article

Download citation ▾
Xun Li, Baoyan Duan, Yiqun Zhang, Yongxin Guo. Optimal Design of Aperture Illuminations for Microwave Power Transmission with Annular Collection Areas. Engineering, 2023, 30(11): 63‒74 https://doi.org/10.1016/j.eng.2023.07.016

References

[1]
Satoru S, Nguyen DH, Nishioka Y, Shimamura K, Mori K, Yokota S.The logistics system by rotary wing unmanned aerial vehicle with 28 GHz microwave power transmission. In:Proceedings of IEEE Wireless Power Transfer Conference (WPTC); 2019 Jun 18-21; London, UK; 2019.
[2]
Shinohara N. Wireless power transmission progress for electric vehicle in Japan. In: Proceedings of 2013 IEEE Radio and Wireless Symposium; 2013 Jan 20-23; Austin, TX, USA; 2013.
[3]
C. Bergsrud, J. Straub. A space-to-space microwave wireless power transmission experiential mission using small satellites. Acta Astronaut, 103 ( 2013), pp. 193-203
[4]
L. Sun, L. Wan, K. Liu, X. Wang. Cooperative-evolution-based WPT resource allocation for large-scale cognitive industrial IoT. IEEE Trans Industr Inform, 16 (8) ( 2020), pp. 5401-5411 DOI: 10.1109/tii.2019.2961659
[5]
C.T. Rodenbeck, P.I. Jaffe, B.H. Strassner II, P.E. Hausgen, J.O. McSpadden, H. Kazemi, et al.. Microwave and millimeter wave power beaming. IEEE J Microw, 1 (1) ( 2021), pp. 229-259 DOI: 10.1109/jmw.2020.3033992
[6]
X. Li, B. Duan, L. Song, Y. Yang, Y. Zhang, D. Wang. A new concept of space solar power satellite. Acta Astronaut, 136 ( 2017), pp. 182-189
[7]
X. Li, K.M. Luk, B. Duan. Aperture illumination designs for microwave wireless power transmission with constraints on edge tapers using bezier curves. IEEE Trans Antennas Propag, 67 (2) ( 2019), pp. 1380-1385 DOI: 10.1109/tap.2018.2884850
[8]
S. Prasad. On an index for array optimization and the discrete prolate spheroidal functions. IEEE Trans Antennas Propag, AP-30 (5) ( 1982), pp. 1021-1023
[9]
G. Oliveri, L. Poli, A. Massa. Maximum efficiency beam synthesis of radiating planar arrays for wireless power transmission. IEEE Trans Antennas Propag, 61 (5) ( 2013), pp. 2490-2499
[10]
S. Kojima, T. Mitani, N. Shinohara. Array optimization for maximum beam collection efficiency to an arbitrary receiving plane in the near field. IEEE Open J Antennas Propag, 2 ( 2021), pp. 95-103 DOI: 10.1109/ojap.2020.3044443
[11]
A.F. Morabito, A.R. Laganà, T. Isernia. Optimizing power transmission in given target areas in the presence of protection requirements. IEEE Antennas Wirel Propag Lett, 14 ( 2015), pp. 44-47
[12]
A.F. Morabito. Synthesis of maximum-efficiency beam arrays via convex programming and compressive sensing. IEEE Antennas Wirel Propag Lett, 16 ( 2017), pp. 2404-2407
[13]
X. Li, B. Duan, L. Song. Design of clustered planar arrays for microwave wireless power transmission. IEEE Trans Antennas Propag, 67 (1) ( 2019), pp. 606-611
[14]
Rocca P, Oliveri G, Massa A. Innovative array designs for wireless power transmission. In: Proceedings of IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications; 2011 May 12-13; Kyoto, Japan; 2011.
[15]
N. Anselmi, A. Polo, M.A. Hannan, M. Salucci, P. Rocca. Maximum BCE synthesis of domino-tiled planar arrays for far-field wireless power transmission. J Electromagn Wave, 34 (17) ( 2020), pp. 2349-2370
CrossRef Google scholar
[16]
X. Li, B. Duan, J. Zhou, L. Song, Y. Zhang. Planar array synthesis for optimal microwave power transmission with multiple constraints. IEEE Antennas Wirel Propag Lett, 16 ( 2017), pp. 70-73
[17]
X. Li, B. Duan, L. Song, Y. Zhang, W. Xu. Study of stepped amplitude distribution taper for microwave power transmission for SSPS. IEEE Trans Antennas Propag, 65 (10) ( 2017), pp. 5396-5405
[18]
A.K.M. Baki, N. Shinohara, H. Matsumoto, K. Hashimoto, T. Mitani. Study of isosceles trapezoidal edge tapered phased array antenna for solar power station/satellite. IEICE Trans Commun, E90-B (4) ( 2007), pp. 968-977 DOI: 10.1093/ietcom/e90-b.4.968
[19]
X. Li, Y. Guo. Multiobjective optimization design of aperture illuminations for microwave power transmission via multiobjective grey wolf optimizer. IEEE Trans Antennas Propag, 68 (8) ( 2020), pp. 6265-6276 DOI: 10.1109/tap.2020.2981736
[20]
X. Li, K. Luk, B. Duan. Multiobjective optimal antenna synthesis for microwave wireless power transmission. IEEE Trans Antennas Propag, 67 (4) ( 2019), pp. 2739-2744 DOI: 10.1109/tap.2019.2893312
[21]
Potter SD. Specialized phased-array antenna patterns for wireless power and information transmission. In: Proceedings of Space Manufacturing 10 Pathways to the High Frontier; 1995 May 4-7; Princeton, NJ, USA; 1995.
[22]
N. Takabayashi, N. Shinohara, T. Mitani, M. Furukawa, T. Fujiwara. Rectification improvement with flat-topped beams on 2.45-GHz rectenna arrays. IEEE Trans Microw Theory Tech, 68 (3) ( 2020), pp. 1151-1163 DOI: 10.1109/tmtt.2019.2951098
[23]
Prasad D, Hassan A, Verma DK, Sarangi P, Singh S. Disaster management system using wireless sensor network: a review. In:Proceedings of 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA); 2021 Nov 26-27; Nagpur, India; 2021.
[24]
S. Son, S. Jeon, C. Kim, W. Hwang. GA-based design of multi-ring arrays with omnidirectional conical beam pattern. IEEE Trans Antennas Propag, 58 (5) ( 2010), pp. 1527-1535
[25]
D. Hua, S. Qi, W. Wu, D. Fang. Synthesis of conical beam array antenna with concentric loop configuration using element-level pattern diversity technique. IEEE Trans Antennas Propag, 66 (11) ( 2018), pp. 6397-6402 DOI: 10.1109/tap.2018.2867041
[26]
I. Manek, Y.B. Ovchinnicov, R. Grimm. Generation of a hollow laser beam for atom trapping using an axicon. Opt Commun, 147 (1) ( 1998), pp. 67-70
[27]
G. Roosen, C. Imbert. The TEM*01 mode laser beam—a powerful tool for optical levitation of various types of spheres. Opt Commun, 26 (3) ( 1978), pp. 432-436
[28]
B. Shao, S.C. Esener, J.M. Nascimento, E.L. Botvinick, M.W. Berns. Dynamically adjustable annular laser trapping based on axicons. Appl Opt, 45 (25) ( 2006), pp. 6421-6428
[29]
J.F. Guan, Z. Shen, X. Ni, J. Lu, J. Wang, B. Xu. Numerical simulation of the ultrasonic waves generated by ring-shaped laser illumination patterns. Opt Laser Technol, 39 (6) ( 2007), pp. 1281-1287
[30]
J.W. Sherman. Properties of focused apertures in the Fresnel region. IEEE Trans Antennas Propag, 10 (4) ( 1962), pp. 399-408
[31]
S. Karimkashi, A.A. Kishk. Focused microstrip array antenna using a Dolph-Chebyshev near-field design. IEEE Trans Antennas Propag, 57 (12) ( 2009), pp. 3813-3820
[32]
A. Buffi, A.A. Serra, P. Nepa, H.T. Chou, G. Manara. A focused planar microstrip array for 2.4 GHz RFID readers. IEEE Trans Antennas Propag, 58 (5) ( 2010), pp. 1536-1544
[33]
C.A. Balanis. Antenna theory: analysis and design. ( 3rd ed.), Wiley, New York City ( 2005)
[34]
F.R. Gantamacher. The theory of matrices. Chelsea, New York City ( 1959)
[35]
Version 9.4 ( R2018a), MathWorks. Natick: MATLAB. 2018.
[36]
S.D. Potter. Optimization of microwave power transmission from solar power satellites [dissertation]. New York University, New York City ( 1993)
[37]
S. Mirjalili, S.M. Mirjalili, A. Lewis. Grey wolf optimizer. Adv Eng Softw, 69 ( 2014), pp. 46-61
[38]
F. Gao, L. Han. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput Optim Appl, 51 (1) ( 2012), pp. 259-277 DOI: 10.1007/s10589-010-9329-3
[39]
X. Li, Y.X. Guo. Grey wolf optimizer for antenna optimization designs: continuous, binary, single-objective, and multiobjective implementations. IEEE Antennas Propag Mag, 64 (6) ( 2022), pp. 29-40
[40]
R.J. Mailloux.Phased array antenna handbook. (2nd ed.), Artech House, Norwood ( 2005)
Funding
the National Key Research and Development Program of China(2021YFB3900300); the National Natural Science Foundation of China(62201416); the Fundamental Research Funds for the Central Universities(QTZX23070); the Qin Chuang Yuan High-Level Innovative and Entrepreneurial Talents Project(QCYRCXM-2022-314); Singapore Ministry of Education Academic Research Fund Tier 1.
AI Summary AI Mindmap
PDF(2836 KB)

Accesses

Citations

Detail

Sections
Recommended

/