Electrical Resistivity Modification of Electrodeposited Mo and Mo–Co Nanowires for Interconnect Applications

Jun Hwan Moon, Taesoon Kim, Youngmin Lee, Seunghyun Kim, Yanghee Kim, Jae-Pyoung Ahn, Jungwoo Choi, Hyuck Mo Lee, Young Keun Kim

Engineering ›› 2024, Vol. 32 ›› Issue (1) : 127-137.

PDF(3564 KB)
PDF(3564 KB)
Engineering ›› 2024, Vol. 32 ›› Issue (1) : 127-137. DOI: 10.1016/j.eng.2023.07.017
Research
Article

Electrical Resistivity Modification of Electrodeposited Mo and Mo–Co Nanowires for Interconnect Applications

Author information +
History +

Abstract

Achieving historically anticipated improvement in the performance of integrated circuits is challenging, due to the increasing cost and complexity of the required technologies with each new generation. To overcome this limitation, the exploration and development of novel interconnect materials and processes are highly desirable in the microelectronics field. Molybdenum (Mo) is attracting attention as an advanced interconnect material due to its small resistivity size effect and high cohesive energy; however, effective processing methods for such materials have not been widely investigated. Here, we investigate the electrochemical behavior of ions in the confined nanopores that affect the electrical properties and microstructures of nanoscale Mo and Mo–Co alloys prepared via template-assisted electrodeposition. Additives in an electrolyte allow the deposition of extremely pure metal materials, due to their interaction with metal ions and nanopores. In this study, boric acid and tetrabutylammonium bisulfate (TBA) were added to an acetate bath to inhibit the hydrogen evolution reaction. TBA accelerated the reduction of Mo at the surface by inducing surface conduction on the nanopores. Metallic Mo nanowires with a 130 nm diameter synthesized through high-aspect-ratio nanopore engineering exhibited a resistivity of (63.0 ± 17.9) μΩ·cm. We also evaluated the resistivities of Mo–Co alloy nanowires at various compositions toward replacing irreducible conventional barrier/liner layers. An intermetallic compound formed at a Mo composition of 28.6 at%, the resistivity of the Mo–Co nanowire was (58.0 ± 10.6) μΩ·cm, indicating its superior electrical and adhesive properties in comparison with those of conventional barriers such as TaN and TiN. Furthermore, density functional theory and non-equilibrium Green’s function calculations confirmed that the vertical resistance of the via structure constructed from Mo-based materials was 21% lower than that of a conventional Cu/Ta/TaN structure.

Graphical abstract

Keywords

Molybdenum / Molybdenum-cobalt / Interconnect / Microstructure / Electrodeposition / Density functional theory

Cite this article

Download citation ▾
Jun Hwan Moon, Taesoon Kim, Youngmin Lee, Seunghyun Kim, Yanghee Kim, Jae-Pyoung Ahn, Jungwoo Choi, Hyuck Mo Lee, Young Keun Kim. Electrical Resistivity Modification of Electrodeposited Mo and Mo–Co Nanowires for Interconnect Applications. Engineering, 2024, 32(1): 127‒137 https://doi.org/10.1016/j.eng.2023.07.017

References

[[1]]
D. Gall. The search for the most conductive metal for narrow interconnect lines. J Appl Phys, 127 (5) ( 2020), Article 050901
[[2]]
Witt C, Yeap KB, Leśniewska AA, Wan D, Jordan N, Ciofi I, et al. Testing the limits of TaN barrier scaling. In:Proceedings of the 2018 IEEE International Interconnect Technology Conference (IITC); 2018 Jun 4- 7 ; Santa Clara, CA, USA. Piscataway: IEEE; 2018. p. 54-6.
[[3]]
C.L. Lo, B.A. Helfrecht, Y. He, D.M. Guzman, N. Onofrio, S. Zhang, et al.. Opportunities and challenges of 2D materials in back-end-of-line interconnect scaling. J Appl Phys, 128 (8) ( 2020), Article 080903
[[4]]
Yeoh A, Madhavan A, Kybert N, Anand S, Shin J, Asoro M, et al. Interconnect stack using self-aligned quad and double patterning for 10nm high volume manufacturing. In:Proceedings of the 2018 IEEE International Interconnect Technology Conference (IITC); 2018 Jun 4- 7 ; Santa Clara, CA, USA. Piscataway: IEEE; 2018. p. 144-7.
[[5]]
Mont FW, Zhang X, Wang W, Kelly JJ, Standaert TE, Quon R, et al. Cobalt interconnect on same copper barrier process integration at the 7nm node. In:Proceedings of the 2017 IEEE International Interconnect Technology Conference (IITC); 2017 May 16- 18 ; Hsinchu, China. Piscataway: IEEE; 2017. p. 1-3.
[[6]]
Hegde G, Bowen RC, Simka H.A first-principles density functional theory based framework for barrier material screening. In:Proceedings of the 2018 IEEE International Interconnect Technology Conference (IITC); 2018 Jun 4- 7 ; Santa Clara, CA, USA. Piscataway: IEEE; 2018. p. 163-5.
[[7]]
J.H. Moon, S. Kim, T. Kim, Y.S. Jeon, Y. Kim, J.P. Ahn, et al.. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires. J Mater Sci Technol, 105 ( 2022), pp. 17-25
[[8]]
K.C. Hsu, D.C. Perng, J.B. Yeh, Y.C. Wang. Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects. Appl Surf Sci, 258 (18) ( 2012), pp. 7225-7230
[[9]]
K.C. Hsu, D.C. Perng, Y.C. Wang. Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier. J Alloy Compd, 516 ( 2012), pp. 102-106
[[10]]
T.C. Kuo, Y.H. Su, W.H. Lee, W.H. Liao, Y.S. Wang, C.C. Hung, et al.. A study on the plating and wetting ability of ruthenium-tungsten multi-layers for advanced Cu metallization. Microelectron Eng, 162 ( 2016), pp. 27-33
[[11]]
E. Yoo, J.H. Moon, Y.S. Jeon, Y. Kim, J.P. Ahn, Y.K. Kim. Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires. Mater Charact, 166 ( 2020), Article 110451
[[12]]
M. Hosseini, D. Ando, Y. Sutou, J. Koike. Co and CoTi x for contact plug and barrier layer in integrated circuits. Microelectron Eng, 189 ( 2018), pp. 78-84
[[13]]
Soulié JP, Tőkei Z, Swerts J, Adelmann C. Aluminide intermetallics for advanced interconnect metallization:thin film studies. In:Proceedings of the 2021 IEEE International Interconnect Technology Conference (IITC); 2021 Jul 6- 9 ; Kyoto, Japan. Piscataway: IEEE, 2021. p. 1-3.
[[14]]
L. Chen, Q. Chen, D. Ando, Y. Sutou, M. Kubo, J. Koike. Potential of low-resistivity Cu2Mg for highly scaled interconnects and its challenges. Appl Surf Sci, 537 ( 2021), Article 148035
[[15]]
H. Tang, Y. Tian, Z. Wu, Y. Zeng, Y. Wang, Y. Hou, et al.. AC line filter electrochemical capacitors: materials, morphology, and configuration. Energy Environ Mater, 5 (4) ( 2022), pp. 1060-1083
[[16]]
D. Chen, Z. Zhao, G. Chen, T. Li, J. Chen, Z. Ye, et al.. Metal selenides for energy storage and conversion: a comprehensive review. Coord Chem Rev, 479 ( 2023), Article 214984
[[17]]
Z. Zhao, K. Xia, Y. Hou, Q. Zhang, Z. Ye, J. Lu. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev, 50 (22) ( 2021), pp. 12702-12743
[[18]]
D. Gall. Electron mean free path in elemental metals. J Appl Phys, 119 (8) ( 2016), Article 085101
[[19]]
Tierno D, Hosseini M, van der Veen M, Dangol A, Croes K, Demuynck S, et al. Reliability of barrierless PVD Mo. In:Proceedings of the 2021 IEEE International Interconnect Technology Conference (IITC); 2021 Jul 6- 9 ; Kyoto, Japan. Piscataway: IEEE, 2021. p. 1-3.
[[20]]
V. Founta, J.P. Soulié, K. Sankaran, K. Vanstreels, K. Opsomer, P. Morin, et al.. Properties of ultrathin molybdenum films for interconnect applications. Materialia, 24 ( 2022), Article 101511
[[21]]
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54 (16) ( 1996), pp. 11169-11186
[[22]]
G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 6 (1) ( 1996), pp. 15-50
[[23]]
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77 (18) ( 1996), pp. 3865-3868
[[24]]
S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, et al.. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J Phys Condens Matter, 32 (1) ( 2020), Article 015901
[[25]]
N. Troullier, J.L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys Rev B Condens Matter, 43 (3) ( 1991), pp. 1993-2006
[[26]]
T.J. Morley, L. Penner, P. Schaffer, T.J. Ruth, F. Bénard, E. Asselin. The deposition of smooth metallic molybdenum from aqueous electrolytes containing molybdate ions. Electrochem Commun, 15 (1) ( 2012), pp. 78-80
[[27]]
S.N. Hasan, M. Xu, E. Asselin. Electrosynthesis of metallic molybdenum from water deficient solution containing molybdate ions and high concentrations of acetate. Surf Coat Tech, 357 ( 2019), pp. 567-574
[[28]]
J.M. Pachlhofer, A.T. Martín-Luengo, R. Franz, E. Franzke, H. Köstenbauer, J. Winkler, et al.. Industrial-scale sputter deposition of molybdenum oxide thin films: microstructure evolution and properties. J Vac Sci Technol A, 35 (2) ( 2017), Article 021504
[[29]]
M.S. Oh, B.S. Yang, J.H. Lee, S.H. Oh, U.S. Lee, Y.J. Kim, et al.. Improvement of electrical and optical properties of molybdenum oxide thin films by ultralow pressure sputtering method. J Vac Sci Technol A, 30 (3) ( 2012), Article 031501
[[30]]
R.C. Munoz, C. Arenas. Size effects and charge transport in metals: quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces. Appl Phys Rev, 4 (1) ( 2017), Article 011102
[[31]]
A.F. Mayadas, M. Shatzkes, J.F. Janak. Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces. Appl Phys Lett, 14 (11) ( 1969), pp. 345-347
[[32]]
J.H. Han, E. Khoo, P. Bai, M.Z. Bazant.Over-limiting current and control of dendritic growth by surface conduction in nanopores. Sci Rep, 4 ( 2014), p. 7056
[[33]]
L. Zhang, S.M. Kim, S. Cho, H.J. Jang, L. Liu, S. Park. Interfacial double layer mediated electrochemical growth of thin-walled platinum nanotubes. Nanotechnology, 28 (3) ( 2017), Article 035604
[[34]]
Y.S. Jeon, B.C. Park, M.J. Ko, J.H. Moon, E. Jeong, Y.K. Kim. Engineering the shape of one-dimensional metallic nanostructures via nanopore electrochemistry. Nano Today, 42 ( 2022), Article 101348
[[35]]
N. Eliaz, E. Gileadi. Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals. C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Eds.), Modern aspects of electrochemistry, Springer, New York City ( 2008), pp. 191-301
[[36]]
E. Gómez, E. Pellicer, E. Vallés. Influence of the bath composition and the pH on the induced cobalt-molybdenum electrodeposition. J Electroanal Chem, 556 ( 2003), pp. 137-145
[[37]]
R.M. Rose, L.A. Shepard, J. Wulff. The structure and properties of materials: electronic properties. ( 3rd ed.), Wiley, New York City ( 1967)
[[38]]
S.M. Rossnagel. Characteristics of ultrathin Ta and TaN films. J Vac Sci Technol B, 20 (6) ( 2002), pp. 2328-2336
[[39]]
Y. Seo, S. Lee, S.C. Baek, W.S. Hwang, H.Y. Yu, S.H. Lee, et al.. The mechanism of Schottky barrier modulation of tantalum nitride/Ge contacts. IEEE Electron Device Lett, 36 (10) ( 2015), pp. 997-1000
[[40]]
A. Guinier. X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. Courier Corporation, North Chelmsford ( 1994)
[[41]]
S. Dutta, K. Sankaran, K. Moors, G. Pourtois, S. Van Elshocht, J. Bömmels, et al.. Thickness dependence of the resistivity of platinum-group metal thin films. J Appl Phys, 122 (2) ( 2017), Article 025107
[[42]]
T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary alloy phase diagrams ( 2nd ed.), Materials Park, ASM International ( 1990)
[[43]]
E. Gómez, E. Pellicer, E. Vallés. Detection and characterization of molybdenum oxides formed during the initial stages of cobalt-molybdenum electrodeposition. J Appl Electrochem, 33 (3/4) ( 2003), pp. 245-252
[[44]]
E. Beltowska-Lehman, P. Indyka. Kinetics of Ni-Mo electrodeposition from Ni-rich citrate baths. Thin Solid Films, 520 (6) ( 2012), pp. 2046-2051
[[45]]
L. Vanasupa, Y.C. Joo, P.R. Besser, S. Pramanick. Texture analysis of damascene-fabricated Cu lines by X-ray diffraction and electron backscatter diffraction and its impact on electromigration performance. J Appl Phys, 85 (5) ( 1999), pp. 2583-2590
[[46]]
M.E. Gross, R. Drese, C. Lingk, W. Brown, K. Evans-Lutterodt, D. Barr, et al.. Electroplated damascene copper: process influences on recrystallization and texture. MRS Online Proc Library, 564 ( 1999), p. 379
[[47]]
T.M. Philip, N.A. Lanzillo, T. Gunst, T. Markussen, J. Cobb, S. Aboud, et al.. First-principles evaluation of fcc ruthenium for its use in advanced interconnects. Phys Rev Appl, 13 (4) ( 2020), Article 044045
[[48]]
Valencia D, Wilson E, Sarangapani P, Valencia-Zapata GA, Klimeck G, Povolotskyi M, et al. Grain boundary resistance in nanoscale copper interconnections. In:Proceedings of the 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD); 2016 Sep 6-8; Nuremberg, Germany. Piscataway: IEEE; 2016, p. 105-8.
AI Summary AI Mindmap
PDF(3564 KB)

Accesses

Citations

Detail

Sections
Recommended

/