Tailoring Photonic-Engineered Textiles with Butterfly-Mimetic Tertiary Micro/Nano Architectures for Superior Passive Radiative Cooling

Hongyu Guo, Tianye Niu, Jianyong Yu, Xueli Wang, Yang Si

Engineering ›› 2023, Vol. 31 ›› Issue (12) : 120-126.

PDF(3576 KB)
PDF(3576 KB)
Engineering ›› 2023, Vol. 31 ›› Issue (12) : 120-126. DOI: 10.1016/j.eng.2023.07.019
Research
Article

Tailoring Photonic-Engineered Textiles with Butterfly-Mimetic Tertiary Micro/Nano Architectures for Superior Passive Radiative Cooling

Author information +
History +

Abstract

People could potentially mitigate heat discomfort when outdoors by combining passive radiative cooling (PRC) strategies with personal thermal management techniques. However, most current PRC materials lack wearing comfort and durability. In this study, a microarray technique is applied to fabricate the tailoring photonic-engineered textiles with intriguing PRC capability and appealing wearability. The developed radiative cooling textiles (RCTs) demonstrate appropriate air-moisture permeability, structural stability, and extended spectroscopic response with high sunlight reflectivity (91.7%) and robust heat emissivity (95.8%) through the atmospheric transparent spectral window (ATSW). In a hot outdoor cooling test, a skin simulator covered by the RCTs displays a temperature drop of approximately 4.4 °C at noon compared with cotton textiles. The evolution of our mimetic structures may provide new insights into the generation of wearable, thermal-wet comfortable, and robust textiles for exploring PRC techniques in personal thermal management applications.

Graphical abstract

Keywords

Biomimetic materials / Personal thermal management / Textiles / Passive radiative cooling

Cite this article

Download citation ▾
Hongyu Guo, Tianye Niu, Jianyong Yu, Xueli Wang, Yang Si. Tailoring Photonic-Engineered Textiles with Butterfly-Mimetic Tertiary Micro/Nano Architectures for Superior Passive Radiative Cooling. Engineering, 2023, 31(12): 120‒126 https://doi.org/10.1016/j.eng.2023.07.019

References

[1]
M.G. Jacox, M.A. Alexander, D. Amaya, E. Becker, S.J. Bograd, S. Brodie, et al.. Global seasonal forecasts of marine heatwaves. Nature, 604 (7906) ( 2022), pp. 486-490 DOI: 10.1038/s41586-022-04573-9
[2]
E. Pennisi. Living with heat. Science, 370 (6518) ( 2020), pp. 778-781 DOI: 10.1126/science.370.6518.778
[3]
B. Chen, M.M. Xie, Q.Q. Feng, R.R. Wu, L. Jiang. Diurnal heat exposure risk mapping and related governance zoning: a case study of Beijing, China. Sustain Cities Soc, 81 ( 2022), Article 103831
[4]
V. How, S. Singh, T. Dang, L. Fang Lee, H.R. Guo. The effects of heat exposure on tropical farm workers in Malaysia: six-month physiological health monitoring. Int J Environ Health Res, 33 (4) ( 2023), pp. 413-429
CrossRef Google scholar
[5]
P.C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng, J. Xie, et al.. Radiative human body cooling by nanoporous polyethylene textile. Science, 353 (6303) ( 2016), pp. 1019-1023 DOI: 10.1126/science.aaf5471
[6]
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu, X. Liu, et al.. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science, 373 (6555) ( 2021), pp. 692-696 DOI: 10.1126/science.abi5484
[7]
L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin, P.B. Catrysse, et al.. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater, 30 (35) (2018), Article e1802152
[8]
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, et al.. A radiative cooling structural material. Science, 364 (6442) ( 2019), pp. 760-763 DOI: 10.1126/science.aau9101
[9]
K. Tang, K. Dong, J. Li, M.P. Gordon, F.G. Reichertz, H. Kim, et al.. Temperature-adaptive radiative coating for all-season household thermal regulation. Science, 374 (6574) ( 2021), pp. 1504-1509 DOI: 10.1126/science.abf7136
[10]
M. Kim, D. Lee, S. Son, Y. Yang, H. Lee, J. Rho. Visibly transparent radiative cooler under direct sunlight. Adv Opt Mater, 9 (13) ( 2021), p. 2002226
[11]
S. So, Y. Yang, S. Son, D. Lee, D. Chae, H. Lee, et al.. Highly suppressed solar absorption in a daytime radiative cooler designed by genetic algorithm. Nanophotonics, 11 (9) ( 2022), pp. 2107-2115 DOI: 10.1515/nanoph-2021-0436
[12]
A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515 (7528) ( 2014), pp. 540-544 DOI: 10.1038/nature13883
[13]
D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, et al.. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy, 79 ( 2021), Article 105426
[14]
J. Mandal, M.X. Jia, A. Overvig, Y.K. Fu, E. Che, N.F. Yu, et al.. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule, 3 (12) ( 2019), pp. 3088-3099
[15]
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun, N.N. Shi, et al.. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362 (6412) ( 2018), pp. 315-319 DOI: 10.1126/science.aat9513
[16]
D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, et al.. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat Nanotechnol, 16 (2) ( 2021), pp. 153-158 DOI: 10.1038/s41565-020-00800-4
[17]
Y. Zhai, Y.G. Ma, S.N. David, D.L. Zhao, R.N. Lou, G. Tan, et al.. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355 (6329) ( 2017), pp. 1062-1066 DOI: 10.1126/science.aai7899
[18]
P.L. Li, A. Wang, J.J. Fan, Q. Kang, P.K. Jiang, H. Bao, et al.. Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv Funct Mater, 32 (5) ( 2022), Article 2109542
[19]
M. Alberghini, S. Hong, L.M. Lozano, V. Korolovych, Y. Huang, F. Signorato, et al.. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat Sustain, 4 (8) ( 2021), pp. 715-724 DOI: 10.1038/s41893-021-00688-5
[20]
Y.C. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.C. Hsu, L.L. Cai, et al.. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain, 1 (2) ( 2018), pp. 105-112 DOI: 10.1038/s41893-018-0023-2
[21]
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su, Q. Zhang, et al.. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano, 16 (2) ( 2022), pp. 2188-2197 DOI: 10.1021/acsnano.1c08227
[22]
D. Chae, H. Lim, S. So, S. Son, S. Ju, W. Kim, et al.. Spectrally selective nanoparticle mixture coating for passive daytime radiative cooling. ACS Appl Mater Interfaces, 13 (18) ( 2021), pp. 21119-21126 DOI: 10.1021/acsami.0c20311
[23]
G. Kim, K. Park, K.J. Hwang, S. Jin. Highly sunlight reflective and infrared semi-transparent nanomesh textiles. ACS Nano, 15 (10) ( 2021), pp. 15962-15971 DOI: 10.1021/acsnano.1c04104
[24]
D. Chae, M. Kim, H. Lim, D. Lee, S. Son, J. Ha, et al.. Selectively emissive fluoropolymer film for passive daytime radiative cooling. Opt Mater, 128 ( 2022), Article 112273
[25]
Y. Zhang, W. Zhu, C. Zhang, J. Peoples, X. Li, A.L. Felicelli, et al.. Atmospheric water harvesting by large-scale radiative cooling cellulose-based fabric. Nano Lett, 22 (7) ( 2022), pp. 2618-2626 DOI: 10.1021/acs.nanolett.1c04143
[26]
Y.R. Liu, H.F. Zhang, Y.H. Zhang, C. Liang, Q. An. Rendering passive radiative cooling capability to cotton textile by an alginate/CaCO3 coating via synergistic light manipulation and high water permeation. Compos B Eng, 240 ( 2022), Article 109988
[27]
W. Wei, Y. Zhu, Q. Li, Z.F. Cheng, Y.J. Yao, Q. Zhao, et al.. An Al2O3-cellulose acetate-coated textile for human body cooling. Sol Energy Mater Sol Cells, 211 ( 2020), Article 110525
[28]
Y. Ji, Y. Sun, J. Muhammad, X. Li, Z. Liu, P. Tu, et al.. Fabrication of hydrophobic multilayered fabric for passive daytime radiative cooling. Mater Des, 307 (4) ( 2022), Article 2100795
[29]
N.N. Shi, C.C. Tsai, M.J. Carter, J. Mandal, A.C. Overvig, M.Y. Sfeir, et al.. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization. Light Sci Appl, 7 (1) ( 2018), Article 37
[30]
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding. Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett, 22 (2) ( 2022), pp. 680-687 DOI: 10.1021/acs.nanolett.1c03801
[31]
R. Hu, Y.D. Liu, S.M. Shin, S.Y. Huang, X.C. Ren, W.C. Shu, et al.. Emerging materials and strategies for personal thermal management. Adv Energy Mater, 10 (17) ( 2020), Article 1903921
[32]
Y.C. Peng, Y. Cui. Advanced textiles for personal thermal management and energy. Joule, 4 (4) ( 2020), pp. 724-742
[33]
M.N. Cramer, D. Gagnon, O. Laitano, C.G. Crandall.Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev, 102 (4) ( 2022), pp. 1907-1989
CrossRef Google scholar
[34]
H.T. Zhai, D.S. Fan, Q. Li. Dynamic radiation regulations for thermal comfort. Nano Energy, 100 ( 2022), Article 107435
[35]
X.H. Liu, D.T. Wang, Z.W. Yang, H. Zhou, Q.B. Zhao, T.X. Fan. Bright silver brilliancy from irregular microstructures in butterfly Curetis acuta Moor. Adv Opt Mater, 7 (18) ( 2019), Article 1900687
[36]
C.H. Lou, S. An, R.H. Yang, H.R. Zhu, Q.C. Shen, M.D. Jiang, et al.. Enhancement of infrared emissivity by the hierarchical microstructures from the wing scales of butterfly Rapala dioetas. APL Photonics, 6 (3) ( 2021), Article 036101
[37]
N.N. Shi, C.C. Tsai, F. Camino, G.D. Bernard, N. Yu, R. Wehner. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science, 349 (6245) ( 2015), pp. 298-301 DOI: 10.1126/science.aab3564
[38]
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, et al.. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc Natl Acad Sci USA, 117 (26) ( 2020), pp. 14657-14666
CrossRef Google scholar
[39]
D. Xie, Z. Yang, X. Liu, S. Cui, H. Zhou, T. Fan. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus. Soft Matter, 15 (21) ( 2019), pp. 4294-4300 DOI: 10.1039/c9sm00566h
[40]
X.L. Zheng, Q.S. Yang, Y.W. Hu, C.L. Lei, X.P. Wang.Latitudinal variation of morphological characteristics in the swallowtail Sericinus montelus Gray, 1798 (Lepidoptera: Papilionidae). Acta Zool, 96 (2) ( 2015), pp. 242-252
CrossRef Google scholar
[41]
C.C. Tsai, R.A. Childers, N. Nan Shi, C. Ren, J.N. Pelaez, G.D. Bernard, et al.. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat Commun, 11 (1) ( 2020), Article 551
[42]
W. Wang, Y. Yao, T. Luo, L. Chen, J. Lin, L. Li, et al.. Deterministic reshaping of breath figure arrays by directional photomanipulation. ACS Appl Mater Interfaces, 9 (4) ( 2017), Article 4223 DOI: 10.1021/acsami.6b14024
[43]
W. Liu, C. Li, X. Lin, H. Xie, Y. Chen, Z. Li, et al.. Ordered porous films of biomass-based polymers by breath figure: a review. Cellul, 29 ( 2022), Article 6463 DOI: 10.1007/s10570-022-04679-3
Funding
the Ministry of Industry and Information Technology; the National Development and Reform Commission of the People’s Republic of China; the Fundamental Research Funds for the Central Universities(2232020A-06); the Science and Technology Commission of Shanghai Municipality(20QA1400500, 21130750100, 22dz1200102); Huo Yingdong Education Foundation(171065)
AI Summary AI Mindmap
PDF(3576 KB)

Accesses

Citations

Detail

Sections
Recommended

/