The Skyscraper Crop Factory: A Potential Crop-Production System to Meet Rising Urban Food Demand

Li Zhang, Lan Huang, Tao Li, Tao Wang, Xiao Yang, Qichang Yang

Engineering ›› 2023, Vol. 31 ›› Issue (12) : 70-75.

PDF(1061 KB)
PDF(1061 KB)
Engineering ›› 2023, Vol. 31 ›› Issue (12) : 70-75. DOI: 10.1016/j.eng.2023.08.014
Research
Perspective

The Skyscraper Crop Factory: A Potential Crop-Production System to Meet Rising Urban Food Demand

Author information +
History +

Abstract

Vertical farming systems, such as sky farms, are a potential type of agricultural system for stable and effective food production. Here, we highlight the potential of the sky farm, denoted as the “skyscraper crop factory” (SCF), for cereal crop production and discuss some nascent technologies that would be applied in this production system. SCFs are ideal crop-production systems for increasing the effective arable area for crops and ensuring food security in times of crises that cause a shock in global trade. They can also provide food in urban areas to meet producers’ and consumers’ demands for the increased nutrition, taste, and safe production of cereal crops. Moreover, as their use can reduce greenhouse gas emissions, SCFs could be a sustainable addition to conventional agricultural crop production.

Graphical abstract

Keywords

Vertical farming system / Cereal crop production / Plant factory technology / Skyscraper crop factory

Cite this article

Download citation ▾
Li Zhang, Lan Huang, Tao Li, Tao Wang, Xiao Yang, Qichang Yang. The Skyscraper Crop Factory: A Potential Crop-Production System to Meet Rising Urban Food Demand. Engineering, 2023, 31(12): 70‒75 https://doi.org/10.1016/j.eng.2023.08.014

References

[1]
H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, et al.. Food security: the challenge of feeding 9 billion people. Science, 327 (5967) ( 2010), pp. 812-818 DOI: 10.1126/science.1185383
[2]
D. Laborde, W. Martin, J. Swinnen, R. Vos. COVID-19 risks to global food security. Science, 369 (6503) ( 2020), pp. 500-502 DOI: 10.1126/science.abc4765
[3]
M. Pu, Y. Zhong. Rising concerns over agricultural production as COVID-19 spreads: lessons from China. Glob Food Secur, 26 ( 2020), p. 100409
[4]
S. Bakalis, V.P. Valdramidis, D. Argyropoulos, L. Ahrne, J. Chen, P. Cullen, et al.. Perspectives from CO+ RE: how COVID-19 changed our food systems and food security paradigms. Curr Res Food Sci, 3 ( 2020), pp. 166-172
[5]
K. Al-Kodmany. The vertical farm: a review of developments and implications for the vertical city. Buildings, 8 (2) ( 2018), p. 24 DOI: 10.3390/buildings8020024
[6]
R. Shamshiri, F. Kalantari, K.C. Ting, K.R. Thorp, I.A. Hameed, C. Weltzien, et al.. Advances in greenhouse automation and controlled environment agriculture: a transition to plant factories and urban agriculture. Int J Agric Biol Eng, 11 (1) ( 2018), pp. 1-22
[7]
S. Asseng, J.R. Guarin, M. Raman, O. Monje, G. Kiss, D.D. Despommier, et al.. Wheat yield potential in controlled-environment vertical farms. Proc Natl Acad Sci USA, 117 (32) ( 2020), pp. 19131-19135 DOI: 10.1073/pnas.2002655117
[8]
Q. Yang. Plant factory. Tsinghua University Press, Beijing ( 2019)(Chinese).
[9]
L. Zhang, X. Yang, T. Li, R. Gan, Z. Wang, J. Peng, et al.. Plant factory technology lights up urban horticulture in the post-coronavirus world. Hortic Res, 9 ( 2022), p. uhac018
[10]
Y. Ji, Y. Yuan, G. Wu, C. Feng, R. Cheng, Q. Ma, et al.. A novel spectral-splitting solar indoor lighting system with reflective direct-absorption cavity: optical and thermal performance investigating. Energy Convers Manage, 266 ( 2022), p. 115788
[11]
C. Ye, X. Wen, J. Lan, Z. Cai, P.h. Pi, S. Xu, et al.. Surface modification of light hollow polymer microspheres and its application in external wall thermal insulation coatings. Pigm Resin Technol, 45 (1) ( 2016), pp. 45-51
[12]
N. Di, X. He. An energy saving effect evaluation of nano thermal insulation coating for building exterior wall. Int J Microstruct Mater Prop, 16 (2-3) ( 2022), pp. 169-181 DOI: 10.1504/ijmmp.2022.125565
[13]
W. Fang. Total performance evaluation in plant factory with artificial lighting. M. Anpo, H. Fukuda, T. Wada (Eds.), Plant factory using artificial light, Elsevier, Amsterdam ( 2019), pp. 155-165 DOI: 10.1007/978-3-030-17513-9_11
[14]
J. Wang, Y. Tong, Q. Yang, M. Xin. Performance of introducing outdoor cold air for cooling a plant production system with artificial light. Front Plant Sci, 7 ( 2016), p. 270
[15]
T. Weidner, A. Yang, M. Hamm. Energy optimisation of plant factories and greenhouses for different climatic conditions. Energy Convers Manage, 243 ( 2021), p. 114336
[16]
T. Kozai. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory. Proc Jpn Acad, Ser B, Phys Biol Sci, 89 (10) ( 2013), pp. 447-461 DOI: 10.2183/pjab.89.447
[17]
T. Kozai. Towards sustainable plant factories with artificial lighting (PFALs) for achieving SDGs. Int J Agric Biol Eng, 12 (5) ( 2019), pp. 28-37 DOI: 10.25165/j.ijabe.20191205.5177
[18]
L. Graamans, E. Baeza, A. Dobbelsteen, I. Tsafaras, C. Stanghellini. Plant factories versus greenhouses: comparison of resource use efficiency. Agric Syst, 160 ( 2017), pp. 31-43
[19]
D. Leung, G. Caramanna, M. Maroto-Valer. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev, 39 ( 2014), pp. 426-443
[20]
Z. Wang, R. Yang, Y. Liang, S. Zhang, Z. Zhang, C. Sun, et al.. Comparing efficacy of different biostimulants for hydroponically grown lettuce (Lactuca sativa L.). Agronomy, 12 (4) ( 2022), p. 786
[21]
E. Navarro-León, F.J. López-Moreno, E. Borda, C. Marín, N. Sierras, B. Blasco, et al.. Effect of L-amino acid-based biostimulants on nitrogen use efficiency (NUE) in lettuce plants. J Sci Food Agric, 102 (15) ( 2022), pp. 7098-7106
CrossRef Google scholar
[22]
P. Gosling, A. Hodge, G. Goodlass, G. Bending. Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ, 113 (1-4) ( 2006), pp. 17-35
[23]
J. Liu, Q. Wang, Z. Song, F. Fang. Bottlenecks and countermeasures of high-penetration renewable energy development in China. Engineering, 7 (11) ( 2021), pp. 1611-1622
[24]
S.K. Bhatia, A.K. Palai, A. Kumar, R.K. Bhatia, A.K. Patel, V.K. Thakur, et al.. Trends in renewable energy production employing biomass-based biochar. Bioresour Technol, 340 ( 2021), p. 125644
[25]
V. Sethi, S. Sharma. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Sol Energy, 82 (9) ( 2008), pp. 832-859
[26]
S. Van Delden, M. SharathKumar, M. Butturini, L.J.A. Graamans, E. Heuvelink, M. Kacira, et al.. Current status and future challenges in implementing and upscaling vertical farming systems. Nat Food, 2 (12) ( 2021), pp. 944-956 DOI: 10.1038/s43016-021-00402-w
[27]
M. SharathKumar, E. Heuvelink, L.F.M. Marcelis. Vertical farming: moving from genetic to environmental modification. Trends Plant Sci, 25 (8) ( 2020), pp. 724-727
[28]
J. Peng, D.E. Richards, N.M. Hartley, G.P. Murphy, K.M. Devos, J.E. Flintham, et al.. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 400 (6741) ( 1999), pp. 256-261
[29]
A. Sasaki, M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A. Nishimura, D. Swapan, et al.. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 416 (6882) ( 2002), pp. 701-702
[30]
S. Hu, X. Hu, J. Hu, S. Lianguang, G. Dong, D. Zeng, et al.. Xiaowei, A new rice germplasm for large-scale indoor research. Mol Plant, 11 (11) ( 2018), pp. 1418-1420
[31]
S. Duan, Z. Zhao, Y. Qiao, C. Chunge, A. Morgunov, A. Condon, et al.. GAR dwarf gene Rht14 reduced plant height and affected agronomic traits in durum wheat (Lactuca sativa). Field Crops Res, 248 ( 2020), p. 107721
[32]
X. Kong, M. Zhang, I. De Smet, Z. Ding. Designer crops: optimal root system architecture for nutrient acquisition. Trends Biotechnol, 32 (12) ( 2014), pp. 597-598
[33]
J. Guo, W. Li, L. Shang, Y. Wang, P. Yan, Y. Bai, et al.. OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1. New Phytol, 230 (5) ( 2021), pp. 1953-1966 DOI: 10.1111/nph.17303
[34]
J. Ning, B. Zhang, N. Wang, Y. Zhou, L. Xiong. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the Lamina joint of rice. Plant Cell, 23 (12) ( 2011), pp. 4334-4347 DOI: 10.1105/tpc.111.093419
[35]
M. Newell-McGloughlin. Nutritionally improved agricultural crops. Plant Physiol, 147 (3) ( 2008), pp. 939-953 DOI: 10.1104/pp.108.121947
[36]
Z. Li, J. Gao, J. Xu, F. Xiaoyan, H. Han, L. Wang, et al.. Rice carotenoid biofortification and yield improvement conferred by endosperm-specific overexpression of OsGLK1. Front Plant Sci, 13 ( 2022), p. 951605
[37]
E. Cahoon, S. Hall, K. Ripp, T. Ganzke, W. Hitz, S. Coughlan. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol, 21 (9) ( 2003), pp. 1082-1087
[38]
S. Wang, A. Adekunle, V. Raghavan. Exploring the integration of bioelectrochemical systems and hydroponics: possibilities, challenges, and innovations. J Clean Prod, 366 ( 2022), p. 132855
[39]
Y. Liu, R. Guo, S. Zhang, Y. Sun, F. Wang. Uptake and translocation of nano/microplastics by rice seedlings: evidence from a hydroponic experiment. J Hazard Mater, 421 ( 2022), p. 126700
[40]
M.A. Urbina, F. Correa, F. Aburto, J.P. Ferrio. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Sci Total Environ, 741 ( 2020), p. 140216
[41]
Y. Li, Y.F. Huang, S.H. Huang, Y.H. Kuang, C.W. Tung, C.T. Liao, et al.. Genomic and phenotypic evaluation of rice susceptible check TN1 collected in Taiwan. Bot Stud, 60 (1) ( 2019), p. 19
[42]
H. Hirai, Y. Kitaya. Evaluation of growth performance of super-dwarf rice in space agriculture. T Jpn Soc Aeronaut S, 16 (2) ( 2018), pp. 152-156 DOI: 10.2322/tastj.16.152
[43]
O. Monje, B. Bugbee. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency. Plant Cell Environ, 21 (3) ( 1998), pp. 315-324
[44]
Y. Wang, D. Deng, H. Ding, X. Xu, R. Zhang, S. Wang, et al.. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype: physiological and transcriptomic evidence. PLoS One, 8 (6)( 2013), p. e66466 DOI: 10.1371/journal.pone.0066466
[45]
W.Y. Liu, H.H. Lin, C.P. Yu, C.K. Chang, H.J. Chen, J.J. Lin, et al.. Maize ANT 1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Proc Natl Acad Sci USA, 117 (35) ( 2020), pp. 21747-21756 DOI: 10.1073/pnas.2012245117
[46]
Z. Bian, Z. Li, S. Wang, Q. Yang. Exploration on rapid breeding technology of rice in plant factory. Agric Eng Technol, 19 ( 2022), pp. 60-62(Chinese).
[47]
Z. Li, R. Guo, M. Li, Y. Chen, G. Li. A review of computer vision technologies for plant phenotyping. Comput Electron Agric, 176 ( 2020), p. 105672
[48]
Z. Tian, W. Ma, Q. Yang, F. Duan. Application status and challenges of machine vision in plant factory—a review. Inf Process Agric, 9 (2) ( 2021), pp. 195-211 DOI: 10.32604/iasc.2021.016314
[49]
J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat, P. Nillaor. IoT and agriculture data analysis for smart farm. Comput Electron Agric, 156 ( 2019), pp. 467-474
[50]
D. Tilman, C. Balzer, J. Hill, B. Befort. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 108 (50) ( 2011), pp. 20260-20264 DOI: 10.1073/pnas.1116437108
[51]
J.A. Foley, N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, et al.. Solutions for a cultivated planet. Nature, 478 (7369) ( 2011), pp. 337-342 DOI: 10.1038/nature10452
[52]
H.C.J. Godfray, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, N. Nisbett, et al.. The future of the global food system. Philos Trans R Soc Lond B Biol Sci, 365 (1554) ( 2010), pp. 2769-2777 DOI: 10.1098/rstb.2010.0180
[53]
J. Poore, T. Nemecek. Reducing food’s environmental impacts through producers and consumers. Science, 360 (6392) ( 2018), pp. 987-992 DOI: 10.1126/science.aaq0216
[54]
D. Despommier. The vertical farm: feeding the world in the 21st century. Macmillan, Cambridge ( 2010)
[55]
G.J. Graff. Skyfarming. UWSpace, Waterloo ( 2012)
[56]
H. Zhou, K. Specht, C.K. Kirby. Consumers’ and stakeholders’ acceptance of indoor agritecture in Shanghai (China). Sustainability, 14 (5) ( 2022), p. 2771 DOI: 10.3390/su14052771
Funding
the National Key Research and Development Program of China(2022YFB3604600); the Local Financial Project of the National Agricultural Science and Technology Center(NASC2023TD01); the Local Financial Project of the National Agricultural Science and Technology Center(NASC2023TD10); the Central Public-interest Scientific Institution Basal Research Fund(S2022006); the Sichuan Science and Technology Program(2022NSFSC1719); the Agricultural Science and Technology Innovation Program of CAAS(ASTIP-34-IUA-01); the Agricultural Science and Technology Innovation Program of CAAS(ASTIP-IUA-2023002)
AI Summary AI Mindmap
PDF(1061 KB)

Accesses

Citations

Detail

Sections
Recommended

/