Highly Efficient Broadband Achromatic Microlens Design Based on Low-Dispersion Materials

Xueqian Wang, Chuanbao Liu, Feilou Wang, Weijia Luo, Chengdong Tao, Yuxuan Hou, Lijie Qiao, Ji Zhou, Jingbo Sun, Yang Bai

Engineering ›› 2024, Vol. 38 ›› Issue (7) : 194-200.

PDF(2126 KB)
PDF(2126 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 194-200. DOI: 10.1016/j.eng.2023.08.023
Research
Article

Highly Efficient Broadband Achromatic Microlens Design Based on Low-Dispersion Materials

Author information +
History +

Abstract

Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultra-compact configuration; however, they suffer from complex fabrication processes and low focusing efficiency. In this study, we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion, an adequately designed convex surface, and a thickness profile distribution. By taking into account the absolute chromatic aberration, relative focal length shift (FLS), and numerical aperture (NA), microlens with a certain focal length can be realized through our realized map of geometric features. Accordingly, the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam, and precise surface profiles were obtained. The fabricated microlenses exhibited a high average focusing efficiency of 65% at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging. Moreover, the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited. These results demonstrate the effectiveness of our proposed achromatic microlens design approach, which expands the prospects of miniaturized optics such as virtual and augmented reality, ultracompact microscopes, and biological endoscopy.

Graphical abstract

Keywords

Broadband achromatic focusing / Metamaterials / Low dispersion materials / Visible wavelength / Microlenses

Cite this article

Download citation ▾
Xueqian Wang, Chuanbao Liu, Feilou Wang, Weijia Luo, Chengdong Tao, Yuxuan Hou, Lijie Qiao, Ji Zhou, Jingbo Sun, Yang Bai. Highly Efficient Broadband Achromatic Microlens Design Based on Low-Dispersion Materials. Engineering, 2024, 38(7): 194‒200 https://doi.org/10.1016/j.eng.2023.08.023

References

[1]
Z. Li, P. Lin, Y.W. Huang, J.S. Park, W.T. Chen, Z. Shi, et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci Adv, 7 (5) (2021), p. eabe4458
[2]
T.M. Urner, A. Inman, B. Lapid, S. Jia. Three-dimensional light-field microendoscopy with a grin lens array. Biomed Opt Express, 13 (2) (2022), pp. 590-607
[3]
W. Zhu, F. Duan, K. Tatsumi, A. Beaucamp. Monolithic topological honeycomb lens for achromatic focusing and imaging. Optica, 9 (1) (2022), pp. 100-107
[4]
S. Reichelt, H. Zappe. Design of spherically corrected, achromatic variable-focus liquid lenses. Opt Express, 15 (21) (2007), pp. 14146-14154
[5]
D. Wang, F. Liu, T. Liu, S. Sun, Q. He, L. Zhou. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci Appl, 10 (1) (2021), p. 67
[6]
T. Santiago-Cruz, A. Fedotova, V. Sultanov, M.A. Weissflog, D. Arslan, M. Younesi, et al. Photon pairs from resonant metasurfaces. Nano Lett, 21 (10) (2021), pp. 4423-4429
[7]
P. Li, G. Hu, I. Dolado, M. Tymchenko, C. Qiu, F.J. Alfaro-Mozaz, et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat Commun, 11 (1) (2020), p. 3663
[8]
C. Wu, A.B. Khanikaev, R. Adato, N. Arju, A.A. Yanik, H. Altug, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater, 11 (1) (2012), pp. 69-75
[9]
A.S. Solntsev, G.S. Agarwal, Y.S. Kivshar. Metasurfaces for quantum photonics. Nat Photonics, 15 (5) (2021), pp. 327-336
[10]
K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, Y. Kivshar. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett, 121 (19) (2018), p. 193903
[11]
Z. Zhang, J. Wang, M. Pu, X. Ma, C. Huang, Y. Guo, et al. Broadband achromatic transmission-reflection-integrated metasurface based on frequency multiplexing and dispersion engineering. Adv Opt Mater, 9 (7) (2021), p. 2001736
[12]
Y. Wang, Q. Fan, T. Xu. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv, 4 (1) (2021), p. 200008
[13]
X. Luo, F. Zhang, M. Pu, Y. Guo, X. Li, X. Ma. Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics, 11 (1) (2022), pp. 1-20
[14]
N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334 (6054) (2011), pp. 333-337
[15]
L. Li, Z.X. Liu, X.F. Ren, S.M. Wang, V.C. Su, M.K. Chen, et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 368 (6498) (2020), pp. 1487-1490
[16]
R. Ahmed, H. Butt. Strain-multiplex metalens array for tunable focusing and imaging. Adv Sci, 8 (4) (2021), p. 2003394
[17]
K. Chen, Y. Hou, S. Chen, D. Yuan, H. Ye, G. Zhou. Design, fabrication, and applications of liquid crystal microlenses. Adv Opt Mater, 9 (20) (2021), p. 2100370
[18]
K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, et al.A reconfigurable active Huygens’ metalens. Adv Mater, 29 (17) (2017), p. 1606422
[19]
B.H. Chen, P.C. Wu, V.C. Su, Y.C. Lai, C.H. Chu, I.C. Lee, et al. Gan metalens for pixel-level full-color routing at visible light. Nano Lett, 17 (10) (2017), pp. 6345-6352
[20]
M. Khorasaninejad, Z. Shi, A.Y. Zhu, W.T. Chen, V. Sanjeev, A. Zaidi, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett, 17 (3) (2017), pp. 1819-1824
[21]
F. Zhao, Z. Li, X. Dai, X. Liao, S. Li, J. Cao, et al.Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens. Adv Opt Mater, 8 (21) (2020), p. 2000842
[22]
X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, et al. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging. Adv Opt Mater, 8 (2) (2020), p. 1901342
[23]
W. Zang, Q. Yuan, R. Chen, L. Li, T. Li, X. Zou, et al. Chromatic dispersion manipulation based on metalenses. Adv Mater, 32 (27) (2020), p. 1904935
[24]
G. Yoon, K. Kim, D. Huh, H. Lee, J. Rho. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat Commun, 11 (1) (2020), p. 2268
[25]
Y. Wei, Y. Wang, X. Feng, S. Xiao, Z. Wang, T. Hu, et al.Compact optical polarization-insensitive zoom metalens doublet. Adv Opt Mater, 8 (13) (2020), p. 2000142
[26]
M.K. Park, C.S. Park, Y.S. Hwang, E.S. Kim, D.Y. Choi, S.S. Lee. Virtual-moving metalens array enabling light-field imaging with enhanced resolution. Adv Opt Mater, 8 (21) (2020), p. 2000820
[27]
A. Ndao, L. Hsu, J. Ha, J.H. Park, C. Chang-Hasnain, B. Kante. Octave bandwidth photonic fishnet-achromatic-metalens. Nat Commun, 11 (1) (2020), p. 3205
[28]
M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352 (6290) (2016), pp. 1190-1194
[29]
W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol, 13 (3) (2018), pp. 220-226
[30]
W.T. Chen, A.Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun, 10 (1) (2019), p. 355
[31]
R.J. Lin, V.C. Su, S. Wang, M.K. Chen, T.L. Chung, Y.H. Chen, et al. Achromatic metalens array for full-colour light-field imaging. Nat Nanotechnol, 14 (3) (2019), pp. 227-231
[32]
S. Wang, P.C. Wu, V.C. Su, Y.C. Lai, M.K. Chen, H.Y. Kuo, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol, 13 (3) (2018), pp. 227-232
[33]
S. Shrestha, A.C. Overvig, M. Lu, A. Stein, N. Yu.Broadband achromatic dielectric metalenses. Light Sci Appl, 7 (1) (2018), p. 85
[34]
S. Wang, P.C. Wu, V.C. Su, Y.C. Lai, C.H. Chu, J.W. Chen, et al.Broadband achromatic optical metasurface devices. Nat Commun, 8 (1) (2017), p. 187
[35]
B. Xu, H. Li, S. Gao, X. Hua, C. Yang, C. Chen, et al. Metalens-integrated compact imaging devices for wide-field microscopy. Adv Photonics, 2 (6) (2020), p. 066004
[36]
C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, et al. Imaging through nonlinear metalens using second harmonic generation. Adv Mater, 30 (8) (2018), p. 1703843
[37]
Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, X. Luo. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv Opt Mater, 6 (19) (2018), p. 1800592
[38]
E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, M.S. Faraji-Dana, A. Faraon. MEMS-tunable dielectric metasurface lens. Nat Commun, 9 (1) (2018), p. 812
[39]
M. Khorasaninejad, W.T. Chen, A.Y. Zhu, J. Oh, R.C. Devlin, D. Rousso, et al.Multispectral chiral imaging with a metalens. Nano Lett, 16 (7) (2016), pp. 4595-4600
[40]
Z. Shen, S. Zhou, X. Li, S. Ge, P. Chen, W. Hu, et al.Liquid crystal integrated metalens with tunable chromatic aberration. Adv Photonics, 2 (3) (2020), p. 036002
[41]
F. Presutti, F. Monticone. Focusing on bandwidth: achromatic metalens limits. Optica, 7 (6) (2020), pp. 624-631
[42]
P. Lalanne, P. Chavel. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev, 11 (3) (2017), p. 1600295
[43]
M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358 (6367) (2017), p. eaam8100
[44]
W.T. Chen, A.Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater, 5 (8) (2020), pp. 604-620
[45]
S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, A.M. Herkommer. 3D-printed eagle eye: compound microlens system for foveated imaging. Sci Adv, 3 (2) (2017), p. e1602655
[46]
C. Yuan, K. Kowsari, S. Panjwani, Z. Chen, D. Wang, B. Zhang, et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Appl Mater Interfaces, 11 (43) (2019), pp. 40662-40668
[47]
Y. Liu, X. Li, Z. Wang, B. Qin, S. Zhou, J. Huang, et al.Morphology adjustable microlens array fabricated by single spatially modulated femtosecond pulse. Nanophotonics, 11 (3) (2022), pp. 571-581
[48]
S.P. Yang, J.B. Kim, Y.H. Seo, K.H. Jeong. Rotational offset microlens arrays for highly efficient structured pattern projection. Adv Opt Mater, 8 (16) (2020), p. 2000395
[49]
X.Q. Liu, L. Yu, S.N. Yang, Q.D. Chen, L. Wang, S. Juodkazis, et al. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev, 13 (5) (2019), p. 1800272
[50]
B. Xiong, J.N. Wang, R.W. Peng, H. Jing, R.H. Fan, D.X. Qi, et al. Construct achromatic polymer microlens for high-transmission full-color imaging. Adv Opt Mater, 9 (2) (2021), p. 2001524
[51]
F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett, 12 (9) (2012), pp. 4932-4936
[52]
W.J. Smith.Modern optical engineering. (4th ed.), SPIE, Cardiff (2007)
[53]
A. Arbabi, Y. Horie, A.J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun, 6 (1) (2015), p. 7069
[54]
Z.B. Fan, H.Y. Qiu, H.L. Zhang, X.N. Pang, L.D. Zhou, L. Liu, et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl, 8 (1) (2019), p. 67
[55]
M.D. Aiello, A.S. Backer, A.J. Sapon, J. Smits, J.D. Perreault, P. Llull, et al. Achromatic varifocal metalens for the visible spectrum. ACS Photonics, 6 (10) (2019), pp. 2432-2440
[56]
S. Zhang, A. Soibel, S.A. Keo, D. Wilson, S.B. Rafol, D.Z. Ting, et al. Solid-immersion metalenses for infrared focal plane arrays. Appl Phys Lett, 113 (11) (2018), p. 111104
AI Summary AI Mindmap
PDF(2126 KB)

Accesses

Citations

Detail

Sections
Recommended

/