Alterations in the Gut Microbiome in Liver Recipients with Post-Transplant Diabetes Mellitus

Qi Ling, Yuqiu Han, Yue Ma, Xiaosen Wang, Zheng Zhu, Jingyu Wang, Jiaying Cao, Xiaohan Lin, Jun Wang, Baohong Wang

Engineering ›› 2023, Vol. 31 ›› Issue (12) : 98-111.

PDF(8215 KB)
PDF(8215 KB)
Engineering ›› 2023, Vol. 31 ›› Issue (12) : 98-111. DOI: 10.1016/j.eng.2023.09.006
Research
Article

Alterations in the Gut Microbiome in Liver Recipients with Post-Transplant Diabetes Mellitus

Author information +
History +

Abstract

Post-transplant diabetes mellitus (PTDM) increases the risk of graft failure and death in liver transplant (LT) recipients. Experimental studies have indicated that enteric dysbiosis mediated by immunosuppressive tacrolimus (TAC) could contribute to glucose disorders, but no data on human recipients with PTDM have been reported. Here, by combining high-throughput shotgun metagenomics sequencing and metabolomics profiling, we characterized the intestinal microbiome (IM) in LT recipient cohort with or without PTDM and deciphered the potential relationship among IM, TAC dosage, and diabetes. By comparing with both non-PTDM and classical type 2 diabetes mellitus (T2DM), we identified microbial signatures of PTDM, which was characterized by the enriched Proteobacteria and decreased Bacteroidetes. Additionally, the altered microbes, as well as the microbial metabolomics, correlated with the dosage of TAC. Specifically, the levels of beneficial microbes associated with PTDM were lowered in recipients with the high TAC trough concentrations (> 5 ng∙mL-1) than those with low ones (< 5 ng∙mL-1), which was accompanied by reduced faecal metabolites involved in the biosynthesis of α-linolenic acid and arachidonic acid-lowering factors of developing T2DM. Moreover, these microbial signatures linked with the extent of glucose disorders in LT recipients. In summary, the faecal microbiome and metabolome differed between PTDM and non-PTDM patients, which were linked with TAC dosage. This study was the first to explore taxonomic alterations and bacterial gene functions to better understand the contribution of the IM to PTDM.

Graphical abstract

Keywords

Post-transplant diabetes mellitus / Tacrolimus / Metagenomics / Metabolomics

Cite this article

Download citation ▾
Qi Ling, Yuqiu Han, Yue Ma, Xiaosen Wang, Zheng Zhu, Jingyu Wang, Jiaying Cao, Xiaohan Lin, Jun Wang, Baohong Wang. Alterations in the Gut Microbiome in Liver Recipients with Post-Transplant Diabetes Mellitus. Engineering, 2023, 31(12): 98‒111 https://doi.org/10.1016/j.eng.2023.09.006

References

[1]
T. Jenssen, A. Hartmann. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat Rev Endocrinol, 15 (3) ( 2019), pp. 172-188 DOI: 10.1038/s41574-018-0137-7
[2]
M. Hecking, A. Sharif, K. Eller, T. Jenssen. Management of post-transplant diabetes: immunosuppression, early prevention, and novel antidiabetics. Transplant Int, 34 (1) ( 2021), pp. 27-48 DOI: 10.1111/tri.13783
[3]
K.T. Werner, P.A. Mackey, J.C. Castro, E.J. Carey, H.A. Chakkera, C.B. Cook. Hyperglycemia during the immediate period following liver transplantation. Future Sci OA, 2 (1) ( 2016), p. FSO97
[4]
Q. Ling, X. Xu, H. Xie, K. Wang, P. Xiang, R. Zhuang, et al.. New-onset diabetes after liver transplantation: a national report from China Liver Transplant Registry. Liver Int, 36 (5) ( 2016), pp. 705-712 DOI: 10.1111/liv.13042
[5]
H.T. Kuo, M.S. Sampaio, X. Ye, P. Reddy, P. Martin, S. Bunnapradist. Risk factors for new-onset diabetes mellitus in adult liver transplant recipients, an analysis of the organ procurement and transplant network/united network for organ sharing database. Transplantation, 89 (9) ( 2010), pp. 1134-1140
[6]
P.T.T. Pham, P.M.T. Pham, S.V. Pham, P.A.T. Pham, P.C.T. Pham. New onset diabetes after transplantation (NODAT): an overview. Diabetes Metab Syndr Obes, 4 ( 2011), pp. 175-186 DOI: 10.2147/DMSO.S19027
[7]
A. Sharif, M. Hecking, A.P.J. de Vries, E. Porrini, M. Hornum, S. Rasoul-Rockenschaub, et al.. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am J Transplant, 14 (9) ( 2014), pp. 1992-2000 DOI: 10.1111/ajt.12850
[8]
S.H. Ahmed, K. Biddle, T. Augustine, S. Azmi. Post-transplantation diabetes mellitus. Diabetes Ther, 11 (4) ( 2020), pp. 779-801 DOI: 10.1007/s13300-020-00790-5
[9]
A. Shaked, B.L. Loza, E. van Loon, K.M. Olthoff, W. Guan, P.A. Jacobson, et al.. Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes. Nat Med, 28 (5) ( 2022), pp. 999-1005 DOI: 10.1038/s41591-022-01758-7
[10]
Q. Ling, H. Huang, Y. Han, C. Zhang, X. Zhang, K. Chen, et al.. The tacrolimus-induced glucose homeostasis imbalance in terms of the liver: from bench to bedside. Am J Transplant, 20 (3) ( 2020), pp. 701-713 DOI: 10.1111/ajt.15665
[11]
Y. Han, X. Jiang, Q. Ling, L. Wu, P. Wu, R. Tang, et al.. Antibiotics-mediated intestinal microbiome perturbation aggravates tacrolimus-induced glucose disorders in mice. Front Med, 13 (4) ( 2019), pp. 471-481 DOI: 10.1007/s11684-019-0686-8
[12]
Y. Han, L. Wu, Q. Ling, P. Wu, C. Zhang, L. Jia, et al.. Intestinal dysbiosis correlates with sirolimus-induced metabolic disorders in mice. Transplantation, 105 (5) ( 2021), pp. 1017-1029 DOI: 10.1097/tp.0000000000003494
[13]
A. Metwaly, S. Reitmeier, D. Haller. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat Rev Gastroenterol Hepatol, 19 (6) ( 2022), pp. 383-397 DOI: 10.1038/s41575-022-00581-2
[14]
Y. Fan, O. Pedersen. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol, 19 (1) ( 2021), pp. 55-71 DOI: 10.1038/s41579-020-0433-9
[15]
P. Gabarre, C. Loens, Y. Tamzali, B. Barrou, F. Jaisser, J. Tourret. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: bidirectional interactions with clinical consequences. Am J Transplant, 22 (4) ( 2022), pp. 1014-1030 DOI: 10.1111/ajt.16836
[16]
W. Jiao, Z. Zhang, Y. Xu, L. Gong, W. Zhang, H. Tang, et al.. Butyric acid normalizes hyperglycemia caused by the tacrolimus-induced gut microbiota. Am J Transplant, 20 (9) ( 2020), pp. 2413-2424 DOI: 10.1111/ajt.15880
[17]
Q. Ling, X. Xu, B. Wang, L. Li, S. Zheng. The origin of new-onset diabetes after liver transplantation: liver, islets, or gut?. Transplantation, 100 (4) ( 2016), pp. 808-813
[18]
S. Yagi, T. Kaido, T. Iida, A. Yoshizawa, H. Okajima, S. Uemoto. New-onset diabetes mellitus after living-donor liver transplantation: association with graft synthetic function. Surg Today, 47 (6) ( 2017), pp. 733-742 DOI: 10.1007/s00595-016-1444-z
[19]
Z.W. Wu, Z.X. Ling, H.F. Lu, J. Zuo, J.F. Sheng, S.S. Zheng, et al.. Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary Pancreatic Dis Int, 11 (1) ( 2012), pp. 40-50
[20]
J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, et al.. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490 (7418) ( 2012), pp. 55-60 DOI: 10.1038/nature11450
[21]
W. Wang, S. Xu, Z. Ren, J. Jiang, S. Zheng.Gut microbiota and allogeneic transplantation. J Transl Med, 13 ( 2015), p. 275
CrossRef Google scholar
[22]
I. Doycheva, M.D. Leise, K.D. Watt. The intestinal microbiome and the liver transplant recipient: what we know and what we need to know. Transplantation, 100 (1) ( 2016), pp. 61-68
[23]
K. Ban, R.A. Kozar.Protective role of p70S6K in intestinal ischemia/reperfusion injury in mice. PLoS One, 7 (7) ( 2012), Article e41584 DOI: 10.1371/journal.pone.0041584
[24]
K.L. Madsen, N.L. Yanchar, D.L. Sigalet, T. Reigel, R.N. Fedorak. FK 506 increases permeability in rat intestine by inhibiting mitochondrial function. Gastroenterology, 109 (1) ( 1995), pp. 107-114
[25]
M. Rodríguez-Perálvarez, G. Germani, T. Darius, J. Lerut, E. Tsochatzis, A.K. Burroughs. Tacrolimus trough levels, rejection and renal impairment in liver transplantation: a systematic review and meta-analysis. Am J Transplant, 12 (10) ( 2012), pp. 2797-2814
CrossRef Google scholar
[26]
J.G. O’grady, A. Burroughs, P. Hardy, D. Elbourne, A. Truesdale. Tacrolimus versus microemulsified ciclosporin in liver transplantation: the TMC randomised controlled trial. Lancet, 360 (9340) ( 2002), pp. 1119-1125
[27]
R Jayanthi, AR Srinivasan, M Hanifah, AL Maran. Associations among insulin resistance, triacylglycerol/high density lipoprotein (TAG/HDL ratio) and thyroid hormone levels—a study on type 2 diabetes mellitus in obese and overweight subjects. Diabetes Metab Syndr, 11 (Suppl 1) ( 2017), pp. S121-6
[28]
Zhang B, Zhang X, Luo Z, Ren J, Yu X, Zhao H, et al. Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus. J Genet Genomics. In press.
[29]
B Wang, X Jiang, M Cao, J Ge, Q Bao, L Tang, et al.. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep, 6 ( 2016), p. 32002
[30]
Y Ma, Z Guo, B Xia, Y Zhang, X Liu, Y Yu, et al.. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat Biotechnol, 40 (6) ( 2022), pp. 921-931 DOI: 10.1038/s41587-022-01226-0
[31]
DT Truong, EA Franzosa, TL Tickle, M Scholz, G Weingart, E Pasolli, et al.. MetaPhlAn 2 for enhanced metagenomic taxonomic profiling. Nat Methods, 12 (10) ( 2015), pp. 902-903 DOI: 10.1038/nmeth.3589
[32]
S Abubucker, N Segata, J Goll, AM Schubert, J Izard, BL Cantarel, et al.. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol, 8 (6) ( 2012), Article e1002358 DOI: 10.1371/journal.pcbi.1002358
[33]
N Segata, J Izard, L Waldron, D Gevers, L Miropolsky, WS Garrett, et al.. Metagenomic biomarker discovery and explanation. Genome Biol, 12 (6) ( 2011), p. R60
[34]
Q Yuan, S Zhu, S Yue, Y Han, G Peng, L Li, et al.. Alterations in faecal and serum metabolic profiles in patients with neovascular age-related macular degeneration. Nutrients, 15 (13) ( 2023), p. 2984 DOI: 10.3390/nu15132984
[35]
L Wu, Y Han, Z Zheng, G Peng, P Liu, S Yue, et al.. Altered gut microbial metabolites in amnestic mild cognitive impairment and alzheimer’s disease: signals in host-microbe interplay. Nutrients, 13 (1) ( 2021), p. 228 DOI: 10.3390/nu13010228
[36]
P Liu, Li Wu, G Peng, Y Han, R Tang, J Ge, et al.. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun, 80 ( 2019), pp. 633-643
[37]
G Rizzatti, LR Lopetuso, G Gibiino, C Binda, A Gasbarrini. Proteobacteria: a common factor in human diseases. BioMed Res Int, 2017 ( 2017), Article 9351507
[38]
M Rus, M Licker, C Musuroi, D Muntean, S Vulpie, O Magiar, et al.. Association of Proteus mirabilis and Providencia stuartii infections with diabetes. Medicina, 58 (2) ( 2022), p. 271 DOI: 10.3390/medicina58020271
[39]
PL Oh, I Martínez, Y Sun, J Walter, DA Peterson, DF Mercer. Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am J Transplant, 12 (3) ( 2012), pp. 753-762
CrossRef Google scholar
[40]
Y Taur, RR Jenq, MA Perales, ER Littmann, S Morjaria, L Ling, et al.. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood, 124 (7) ( 2014), pp. 1174-1182 DOI: 10.1182/blood-2014-02-554725
[41]
SY Kwan, CM Sabotta, A Joon, P Wei, LE Petty, JE Below, et al.. Gut microbiome alterations associated with diabetes in Mexican Americans in south Texas. mSystems, 7 (3) ( 2022), Article e0003322
[42]
W Gou, C Ling, Y He, Z Jiang, Y Fu, F Xu, et al.. Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes. Diabetes Care, 44 (2) ( 2021), pp. 358-366 DOI: 10.2337/dc20-1536
[43]
C Solé, S Guilly, K da Silva, M Llopis, E Le-Chatelier, P Huelin, et al.. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology, 160 (1) ( 2021), pp. 206-218
[44]
B Zhang, X Zhang, Z Luo, J Ren, X Yu, H Zhao, et al.. Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family ‘Prevotellaceae’ isolated from human faeces. Int J Syst Evol Microbiol, 59 (Pt 8) ( 2009), pp. 1895-1900
[45]
A Koh, P Kovatcheva-Datchary, F Bäckhed. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165 (6) ( 2016), pp. 1332-1345
[46]
E Mariño, JL Richards, KH McLeod, D Stanley, YA Yap, J Knight, et al.. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol, 18 (5) ( 2017), pp. 552-562 DOI: 10.1038/ni.3713
[47]
CM Díaz-Perdigones, A Muñoz-Garach, MD Álvarez-Bermúdez, I Moreno-Indias, FJ Tinahones.Gut microbiota of patients with type 2 diabetes and gastrointestinal intolerance to metformin differs in composition and functionality from tolerant patients. Biomed Pharmacother, 145 ( 2022), p. 112448
[48]
T Ma, T Liu, P Xie, S Jiang, W Yi, P Dai, et al.. UPLC-MS-based urine nontargeted metabolic profiling identifies dysregulation of pantothenate and CoA biosynthesis pathway in diabetic kidney disease. Life Sci, 258 ( 2020), p. 118160
[49]
J Baković, MD López, S Nikolaou, BYK Yu, MA Tossounian, Y Tsuchiya, et al.. Regulation of the CoA biosynthetic complex assembly in mammalian cells. Int J Mol Sci, 22 (3) ( 2021), p. 1131 DOI: 10.3390/ijms22031131
[50]
A. Doria. Leveraging genetics to improve cardiovascular health in diabetes: the 2018 Edwin Bierman Award lecture. Diabetes, 68 (3) ( 2019), pp. 479-489 DOI: 10.2337/dbi18-0036
[51]
M Niu, Y Zhao, L Xiang, Y Jia, J Yuan, X Dai, et al.. 16S rRNA gene sequencing analysis of gut microbiome in a mini-pig diabetes model. Anim Models Exp Med, 5 (1) ( 2022), pp. 81-88
CrossRef Google scholar
[52]
JG. Jones. Hepatic glucose and lipid metabolism. Diabetologia, 59 (6) ( 2016), pp. 1098-1103 DOI: 10.1007/s00125-016-3940-5
[53]
B Li, JCK Leung, LYY Chan, WH Yiu, SCW Tang.A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog Lipid Res, 77 ( 2020), p. 101020
[54]
B Borda, C Lengyel, T Várkonyi, E Kemény, A Ottlakán, A Kubik, et al.. Side effects of the calcineurin inhibitor, such as new-onset diabetes after kidney transplantation. Acta Physiol Hung, 101 (3) ( 2014), pp. 388-394
[55]
JL Song, M Li, LN Yan, JY Yang, J Yang, L Jiang, et al.. Higher tacrolimus blood concentration is related to increased risk of post-transplantation diabetes mellitus after living donor liver transplantation. Int J Surg, 51 ( 2018), pp. 17-23 DOI: 10.1016/j. ijsu.2017.12.037
[56]
J Tourret, BP Willing, S Dion, J MacPherson, E Denamur, BB Finlay. Immunosuppressive treatment alters secretion of ileal antimicrobial peptides and gut microbiota, and favors subsequent colonization by uropathogenic Escherichia coli. Transplantation, 101 (1) ( 2017), pp. 74-82
[57]
CM Gibson, LM Childs-Kean, Z Naziruddin, CK Howell. The alteration of the gut microbiome by immunosuppressive agents used in solid organ transplantation. Transplant Infect Dis, 23 (1) ( 2021), Article e13397
[58]
M Bhat, E Pasini, et al..J Copeland, M Angeli, S Husain, D Kumar, Impact of immunosuppression on the metagenomic composition of the intestinal microbiome: a systems biology approach to post-transplant diabetes. Sci Rep, 7 ( 2017), p. 10277
[59]
ME Sanders, DJ Merenstein, G Reid, GR Gibson, RA Rastall. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol, 16 (10) ( 2019), pp. 605-616 DOI: 10.1038/s41575-019-0173-3
[60]
M Derrien, F Turroni, M Ventura, D van Sinderen. Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends Microbiol, 30 (10) ( 2022), pp. 940-947
[61]
MJ Jung, J Lee, NR Shin, MS Kim, DW Hyun, JH Yun, et al.. Chronic repression of mTOR complex 2 induces changes in the gut microbiota of diet-induced obese mice. Sci Rep, 6 ( 2016), p. 30887
[62]
D Almeida, D Machado, JC Andrade, S Mendo, AM Gomes, AC Freitas.Evolving trends in next-generation probiotics: a 5W1H perspective. Crit Rev Food Sci Nutr, 60 (11) ( 2020), pp. 1783-1796
CrossRef Google scholar
[63]
X Liu, X Tong, Y Zou, X Lin, H Zhao, L Tian, et al.. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat Genet, 54 (1) ( 2022), pp. 52-61
[64]
M Rau, A Rehman, M Dittrich, AK Groen, HM Hermanns, F Seyfried, et al.. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur Gastroenterol J, 6 (10) ( 2018), pp. 1496-1507 DOI: 10.1177/2050640618804444
[65]
MD Lynes, LO Leiria, M Lundh, A Bartelt, F Shamsi, TL Huang, et al.. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med, 23 (5) ( 2017), pp. 631-637 DOI: 10.1038/nm.4297
[66]
APA Macêdo, VR Muñoz, DE Cintra, JR Pauli. 12,13-diHOME as a new therapeutic target for metabolic diseases. Life Sci, 290 ( 2022), p. 120229
[67]
KI Stanford, MD Lynes, H Takahashi, LA Baer, PJ Arts, FJ May, et al.. 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab, 27 (5) ( 2018), pp. 1111-1120
[68]
A Borsini, A Nicolaou, D Camacho-Muñoz, AC Kendall, et al..MG Di Benedetto, J Giacobbe, Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP 450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Mol Psychiatry, 26 (11) ( 2021), pp. 6773-6788 DOI: 10.1038/s41380-021-01160-8
[69]
P Zhuang, H Li, W Jia, Q Shou, Y Zhu, L Mao, et al.. Eicosapentaenoic and docosahexaenoic acids attenuate hyperglycemia through the microbiome-gut-organs axis in db/db mice. Microbiome, 9 (1) ( 2021), p. 185
[70]
B Wang, L Wu, J Chen, L Dong, C Chen, Z Wen, et al.. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduction Targeted Ther, 6 (1) ( 2021), p. 94 DOI: 10.15376/biores.17.1.94-108
[71]
MY Donath, É Dalmas, NS Sauter, M Böni-Schnetzler. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab, 17 (6) ( 2013), pp. 860-872
[72]
A Agus, J Planchais, H Sokol. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 23 (6) ( 2018), pp. 716-724
[73]
BA Rosa, T Supali, L Gankpala, Y Djuardi, E Sartono, Y Zhou, et al.. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia. Microbiome, 6 (1) ( 2018), p. 33
[74]
SR Levan, KA Stamnes, DL Lin, AR Panzer, E Fukui, K McCauley, et al.. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat Microbiol, 4 (11) ( 2019), pp. 1851-1861 DOI: 10.1038/s41564-019-0498-2
[75]
KM Schneider, S Albers, C Trautwein. Role of bile acids in the gut-liver axis. J Hepatol, 68 (5) ( 2018), pp. 1083-1085
Funding
the National Natural Science Foundation of China(82170668, 82171757, 82241215); the National Key Research and Development Program of China(2021YFA1301001); the Sino-German Center for Research Promotion(GZ1546); the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2019-I2M-5-045); the Research Project of Jinan Microecological Biomedicine Shandong Laboratory(JNL-2022040C and JNL-2023006C)
AI Summary AI Mindmap
PDF(8215 KB)

Accesses

Citations

Detail

Sections
Recommended

/