Lycium barbarum L.-Derived miR162a Functions on Osteoporosis Through Directly Promoting Osteoblast Formation

Chunyan Gu, Xichao Yu, Xiaozhu Tang, Leilei Gong, Jingquan Tan, Yuanjiao Zhang, Huili Zheng, Ze Wang, Chenqian Zhang, Yejin Zhu, Zuojian Zhou, Heming Yu, Kai Xu, Jinao Duan, Xiaosong Gu, Ye Yang

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 162-171.

PDF(3875 KB)
PDF(3875 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 162-171. DOI: 10.1016/j.eng.2023.09.007
Research
Article

Lycium barbarum L.-Derived miR162a Functions on Osteoporosis Through Directly Promoting Osteoblast Formation

Author information +
History +

Abstract

Traditional Chinese medicine (TCM) can help prevent or treat diseases; however, there are few studies on the active substances of TCM. For example, Lycium barbarum L. has been proven to be effective in treating osteoporosis for thousands of years, but its active substance remains to be unknown. Prompted by the efforts to modernize TCM, the present study focused on the novel active substance of Lycium barbarum L. to reinforce kidney essence to produce bone marrow. Illumina deep sequencing analysis and stem-loop polymerase chain reaction (PCR) assay revealed that miR162a, a Lycium barbarum L.-derived microRNA, can pass through the gastrointestinal tract to target the bone marrow in mice. Immunofluorescence staining showed that miR162a was absorbed through systemic RNA interference defective transmembrane family member 1 (SIDT1) in the stomach. Bioinformatics prediction and luciferase reporter assay identified that miR162a targeted nuclear receptor corepressor (NcoR). Alizarin red staining and micro-computed tomography (microCT) confirmed that miR162a promoted osteogenic differentiation in bone marrow mesenchymal stem cells, zebrafish, and a mouse model of osteoporosis. In addition, transgenic Nicotiana benthamiana (N. benthamiana) leaves overexpressing miR162a were developed by agrobacterium infiltration method. microCT and tartrate-resistant acid phosphatase staining confirmed that transgenic N. benthamiana leaves effectively protected against osteoporosis in mice. Our study mechanistically explains how Lycium barbarum L. improves osteoporosis and supports that Lycium barbarum L. reinforces kidney essence, thereby strengthening the bone. miR162a expressed by transgenic plants may represent a novel and safe treatment for human osteoporosis.

Graphical abstract

Keywords

Traditional Chinese medicine / Lycium barbarum L. / miR162a / Osteoporosis / Nuclear receptor corepressor / Transgenic plants

Cite this article

Download citation ▾
Chunyan Gu, Xichao Yu, Xiaozhu Tang, Leilei Gong, Jingquan Tan, Yuanjiao Zhang, Huili Zheng, Ze Wang, Chenqian Zhang, Yejin Zhu, Zuojian Zhou, Heming Yu, Kai Xu, Jinao Duan, Xiaosong Gu, Ye Yang. Lycium barbarum L.-Derived miR162a Functions on Osteoporosis Through Directly Promoting Osteoblast Formation. Engineering, 2025, 46(3): 162‒171 https://doi.org/10.1016/j.eng.2023.09.007

References

[1]
Yao R, Heinrich M, Zhao X, Wang Q, Wei J, Xiao P.What’s the choice for goji: Lycium barbarum L. or L. chinense Mill.J Ethnopharmacol 2021; 276:114185.
[2]
Ma J, Meng X, Kang S, Zhang J, Jung H, Park Y.Regulatory effects of the fruit extract of Lycium chinense and its active compound, betaine, on muscle differentiation and mitochondrial biogenesis in C2C12 cells.Biomed Pharmacother 2019; 118:109297.
[3]
Luo L, Guan Z, Jin X, Guan Z, Jiang Y.Identification of kukoamine A as an anti-osteoporosis drug target using network pharmacology and experiment verification.Mol Med 2023; 29(1):36.
[4]
Mitchell P, Parkin R, Kroh E, Fritz B, Wyman S, Pogosova-Agadjanyan E, et al.Circulating microRNAs as stable blood-based markers for cancer detection.Proc Natl Acad Sci USA 2008; 105(30):10513-10518.
[5]
Wang X, Shepherd S, Li N, Che C, Song T, Xiong Y, et al.A target recycling amplification process for the digital detection of exosomal microRNAs through photonic resonator absorption microscopy.Angew Chem Int Ed 2023; 62(16):e202217932.
[6]
van der Zee Y, Eijssen L, Mews P, Ramakrishnan A, Alvarez K, Lardner C, et al.Blood miR-144-3p: a novel diagnostic and therapeutic tool for depression.Mol Psychiatry 2022; 27(11):4536-4549.
[7]
Njock M, O T’Grady, Nivelles O, Lion M, Jacques S, Cambier M, et al.Endothelial extracellular vesicles promote tumour growth by tumour-associated macrophage reprogramming.J Extracell Vesicles 2022; 11(6):e12228.
[8]
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al.Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases.Cell Res 2008; 18(10):997-1006.
[9]
He F, Wang M, Wang J, Wang H, Nie Z.An extracellular miRNA-responsive artificial receptor via dynamic DNA nano-assembly for biomarker-driven therapy.Angew Chem Int Ed 2023; 62(31):e202305227.
[10]
Niedra H, Peculis R, Litvina H, Megnis K, Mandrika I, Balcere I, et al.Genome wide analysis of circulating miRNAs in growth hormone secreting pituitary neuroendocrine tumor patients’ plasma.Front Oncol 2022; 12:894317.
[11]
Zhu K, Liu M, Fu Z, Zhou Z, Kong Y, Liang H, et al.Plant microRNAs in larval food regulate honeybee caste development.PLoS Genet 2017; 13(8):e1006946.
[12]
Trivedi T, Patel M, Nanavaty V, Mankad A, Rawal R, Patel S.MicroRNAs from Holarrhena pubescens stems: identification by small RNA sequencing and their potential contribution to human gene targets.Funct Integr Genomics 2023; 23(2):149.
[13]
Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al.Plant-derived exosomal microRNAs shape the gut microbiota.Cell Host Microbe 2018;24(5):637–52.e8.
[14]
Chen Q, Zhang F, Dong L, Wu H, Xu J, Li H, et al.SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs.Cell Res 2021; 31(3):247-258.
[15]
Li J, Zhang Y, Li D, Liu Y, Chu D, Jiang X, et al.Small non-coding RNAs transfer through mammalian placenta and directly regulate fetal gene expression.Protein Cell 2015; 6(6):391-396.
[16]
Yang J, Hotz T, Broadnax L, Yarmarkovich M, Elbaz-Younes I, Hirschi K.Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911.Sci Rep 2016; 6(1):26834.
[17]
Chen X, Dai G, Ren Z, Tong Y, Yang F, Zhu Y.Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice.BioMed Res Int 2016; 2016:5413849.
[18]
Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al.Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA.Cell Res 2012; 22(1):107-126.
[19]
Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al.Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses.Cell Res 2015; 25(1):39-49.
[20]
Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D, et al.The complex exogenous RNA spectra in human plasma: an interface with human gut biota?.PLoS One 2012; 7(12):e51009.
[21]
Melnik B, John S, Schmitz G.Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth.Nutr J 2013; 12(1):103.
[22]
Baier S, Nguyen C, Xie F, Wood J, Zempleni J.MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers.J Nutr 2014; 144(10):1495-1500.
[23]
Yang J, Farmer L, Agyekum A, Elbaz-Younes I, Hirschi K.Detection of an abundant plant-based small RNA in healthy consumers.PLoS One 2015; 10(9):e0137516.
[24]
Yang J, Farmer L, Agyekum A, Hirschi K.Detection of dietary plant-based small RNAs in animals.Cell Res 2015; 25(4):517-520.
[25]
Tang X, Guo M, Ding P, Deng Z, Ke M, Yuan Y, et al.BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability.Signal Transduct Target Ther 2021; 6(1):361.
[26]
Duxbury MS, Ashley SW, Whang EE.RNA interference: a mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells.Biochem Biophys Res Commun 2005; 331(2):459-463.
[27]
Elhassan MO, Christie J, Duxbury MS.Homo sapiens systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) protein mediates contact-dependent small RNA transfer and microRNA-21-driven chemoresistance.J Biol Chem 2012; 287(8):5267-5277.
[28]
Allen T, Zhang F, Moodie S, Clemens L, Smith A, Gregoire F, et al.Halofenate is a selective peroxisome proliferator-activated receptor gamma modulator with antidiabetic activity.Diabetes 2006; 55(9):2523-2533.
[29]
Wein M, Spatz J, Nishimori S, Doench J, Root D, Babij P, et al.HDAC5 controls MEF2C-driven sclerostin expression in osteocytes.J Bone Miner Res 2015; 30(3):400-411.
[30]
Bergen D, Kague E, Hammond C.Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds.Front Endocrinol 2019; 10:6.
[31]
Song Q, Yong H, Yang L, Liang Y, Liu Z, Niu D, et al.Lycium barbarum polysaccharide protects against osteonecrosis of femoral head via regulating Runx2 expression.Injury 2022; 53(4):1361-1367.
[32]
Zhang H, Zheng L, Yuan Z.Lycium barbarum polysaccharides promoted proliferation and differentiation in osteoblasts.J Cell Biochem 2019; 120(4):5018-5023.
[33]
Meng J, Lv Z, Sun C, Qiao X, Chen C.An extract of Lycium barbarum mimics exercise to improve muscle endurance through increasing type IIa oxidative muscle fibers by activating ERRγ.FASEB J 2020; 34(9):11460-11473.
[34]
Adelipour M, Lubman D, Kim J.Potential applications of mesenchymal stem cells and their derived exosomes in regenerative medicine.Expert Opin Biol Ther 2023; 23(6):1-17.
[35]
Tong L, Feng Q, Lu Q, Zhang J, Xiong Z.Combined H NMR fecal metabolomics and 16S rRNA gene sequencing to reveal the protective effects of Gushudan on kidney-yang-deficiency-syndrome rats via gut–kidney axis.J Pharm Biomed Anal 2022; 217:114843.
[36]
Olmi L, Pepe G, Helmer-Citterich M, Canini A, Gismondi A.Looking for plant microRNAs in human blood samples: bioinformatics evidence and perspectives.Plant Foods Hum Nutr 2023; 78(2):399-406.
[37]
Shi X, Yang H, Birchler J.MicroRNAs play regulatory roles in genomic balance.Bioessays 2023; 45(2):e2200187.
[38]
Title A, Denzler R, Stoffel M.Uptake and function studies of maternal milk-derived microRNAs.J Biol Chem 2015; 290(39):23680-23691.
[39]
Cavalieri D, Rizzetto L, Tocci N, Rivero D, Asquini E, Si-Ammour A, et al.Plant microRNAs as novel immunomodulatory agents.Sci Rep 2016; 6(1):25761.
[40]
Melnik B, John S, Schmitz G.Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy?.J Transl Med 2014; 12(1):43.
[41]
Kosaka N, Izumi H, Sekine K, Ochiya T.MicroRNA as a new immune-regulatory agent in breast milk.Silence 2010; 1(1):7.
[42]
Zhang H, Li Y, Liu Y, Liu H, Wang H, Jin W, et al.Role of plant microRNA in cross-species regulatory networks of humans.BMC Syst Biol 2016; 10(1):60.
[43]
Mlotshwa S, Pruss G, MacArthur J, Endres M, Davis C, Hofseth L, et al.A novel chemopreventive strategy based on therapeutic microRNAs produced in plants.Cell Res 2015; 25(4):521-524.
[44]
Chin A, Fong M, Somlo G, Wu J, Swiderski P, Wu X, et al.Cross-kingdom inhibition of breast cancer growth by plant miR159.Cell Res 2016; 26(2):217-228.
[45]
Carver C, Bruemmer J, Coleman S, Landolt G, Hess T.Effects of corn supplementation on serum and muscle microRNA profiles in horses.FoodSci Nutr 2023; 11(6):2811-2822.
[46]
Philip A, Ferro V, Tate R.Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.Mol Nutr Food Res 2015; 59(10):1962-1972.
[47]
Luo Y, Wang P, Wang X, Wang Y, Mu Z, Li Q, et al.Detection of dietetically absorbed maize-derived microRNAs in pigs.Sci Rep 2017; 7(1):645.
[48]
Hou D, He F, Ma L, Cao M, Zhou Z, Wei Z, et al.The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells.J Nutr Biochem 2018; 57:197-205.
[49]
Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y, et al.Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma.J Nutr Biochem 2015; 26(5):505-512.
[50]
Witwer K, Hirschi K.Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist.Bioessays 2014; 36(4):394-406.
[51]
Witwer K, McAlexander M, Queen S, Adams R.Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs.RNABiol 2013; 10(7):1080-1086.
[52]
Wolf T, Baier S, Zempleni J.The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells.J Nutr 2015; 145(10):2201-2206.
[53]
Huang H, Davis C, Wang T.Extensive degradation and low bioavailability of orally consumed corn miRNAs in mice.Nutrients 2018; 10(2):215.
[54]
Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, et al.Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages.J Dairy Sci 2015; 98(5):2920-2933.
[55]
Arntz O, Pieters B, Oliveira M, Broeren M, Bennink M, de Vries M, et al.Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models.Mol Nutr Food Res 2015; 59(9):1701-1712.
[56]
Kusuma RJ, Manca S, Friemel T, Sukreet S, Nguyen C, Zempleni J.Human vascular endothelial cells transport foreign exosomes from cow’s milk by endocytosis.Am J Physiol Cell Physiol 2016; 310(10):C800-C807.
[57]
Sukreet S, Zhang H, Adamec J, Cui J, Zempleni J.Identification of glycoproteins on the surface of bovine milk exosomes and intestinal cells that facilitate exosome uptake in human colon carcinoma Caco-2 Cells. FASEB J, 31 (S1) (2018), p. 646.25
[58]
Zhao Z, Yu S, Xu M, Li P.Effects of microwave on extracellular vesicles and microRNA in milk.J Dairy Sci 2018; 101(4):2932-2940.
[59]
Zhang S, Sang X, Hou D, Chen J, Gu H, Zhang Y, et al.Plant-derived RNAi therapeutics: a strategic inhibitor of HBsAg.Biomaterials 2019; 210:83-93.
[60]
Fu Z, Zhang X, Zhou X, Ur-Rehman U, Yu M, Liang H, et al.In vivo self-assembled small RNAs as a new generation of RNAi therapeutics.Cell Res 2021; 31(6):631-648.
AI Summary AI Mindmap
PDF(3875 KB)

Accesses

Citations

Detail

Sections
Recommended

/