The Decarbonization of Construction—How Can Alkali-Activated Materials Contribute?

John L. Provis, Susan A. Bernal, Zuhua Zhang

Engineering ›› 2024, Vol. 37 ›› Issue (6) : 18-21.

PDF(849 KB)
PDF(849 KB)
Engineering ›› 2024, Vol. 37 ›› Issue (6) : 18-21. DOI: 10.1016/j.eng.2023.09.014
Views & Comments

The Decarbonization of Construction—How Can Alkali-Activated Materials Contribute?

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
John L. Provis, Susan A. Bernal, Zuhua Zhang. The Decarbonization of Construction—How Can Alkali-Activated Materials Contribute?. Engineering, 2024, 37(6): 18‒21 https://doi.org/10.1016/j.eng.2023.09.014

References

[1]
Royal Academy of Engineering and National Engineering Policy Centre. Decarbonising construction: building a new net zero industry. Report. Royal Academy of Engineering, London (2021).
[2]
G. Habert, S.A. Miller, V.M. John, J.L. Provis, A. Favier, A. Horvath, et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ, 1 (11) (2020), pp. 559-573.
[3]
K.L. Scrivener, V.M. John, E.M. Gartner. Eco-efficient cements: potential, economically viable solutions for a low-CO2, cement-based materials industry. United Nations Environment Programme, Paris (2016).
[4]
G. Cement, C. Association. Concrete future: the GCCA 2050 cement and concrete industry roadmap for net zero concrete. Report. Global Cement and Concrete Association, London (2021).
[5]
International Energy Agency andCement Sustainability Initiative. Technology roadmap: low-carbon transition in the cement industry. Report. International Energy Agency, Paris (2018).
[6]
P. Purnell. Material nature versus structural nurture: the embodied carbon of fundamental structural elements. Environ Sci Technol, 46 (1) (2012), pp. 454-461.
[7]
R.J. Flatt, N. Roussel, C.R. Cheeseman. Concrete: an eco material that needs to be improved. J Eur Ceram Soc, 32 (11) (2012), pp. 2787-2798.
[8]
Provis JL. Innovation in cements—can we meet future construction needs sustainably? In:Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures (CIGOS21) (Lecture Notes in Civil Engineering vol. 203); 2021 Oct 28-29; Ha Long, Vietnam. Singapore: Springer; 2021.
[9]
C. Shi, B. Qu, J.L. Provis. Recent progress in low-carbon binders. Cement Concr Res, 122 (2019), pp. 227-250.
[10]
S. Yousuf, L.F.M. Sanchez, S.A. Shammeh. The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry. J Build Eng, 25 (2019), Article 100815.
[11]
W. Hawkins, J. Orr, P. Shepherd, T. Ibell. Design, construction and testing of a low carbon thin-shell concrete flooring system. Structures, 18 (2019), pp. 60-71.
[12]
J.L. Provis, J.S.J. van Deventer. Alkali-activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer, Berlin (2014).
[13]
Krivenko PV. Alkaline cements. In:Proceedings of the 1st International Conference on Alkaline Cements and Concretes; 1994 Oct 11-14; Kiev, Ukraine. Kiev: VIPOL Stock Company; 1994.
[14]
T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen. One-part alkali-activated materials: a review. Cement Concr Res, 103 (2018), pp. 21-34.
[15]
M.C.G. Juenger, R. Snellings, S.A. Bernal. Supplementary cementitious materials: new sources, characterization, and performance insights. Cement Concr Res, 122 (2019), pp. 257-273.
[16]
A.Z. Khalifa, Ö. Cizer, Y. Pontikes, A. Heath, P. Patureau, S.A. Bernal, et al. Advances in alkali-activation of clay minerals. Cement Concr Res, 132 (2020), Article 106050.
[17]
S.A. Bernal, E.D. Rodríguez, A.P. Kirchheim, J.L. Provis. Management and valorisation of wastes through use in producing alkali-activated cement materials. J Chem Technol Biotechnol, 91 (9) (2016), pp. 2365-2388.
[18]
Garcia-Lodeiro A. Fernandez-Jimenez A. Palomo. Hydration kinetics in hybrid binders: early reaction stages. Cement Concr Compos, 39 (2013), pp. 82-92.
[19]
D.F. Velandia, C.J. Lynsdale, J.L. Provis, F. Ramirez. Effect of mix design inputs, curing and compressive strength on the durability of Na2SO4-activated high volume fly ash concretes. Cement Concr Compos, 91 (2018), pp. 11-20.
[20]
L. Rossi, L. Miranda de Lima, Y. Sun, F. Dehn, J. Provis, G. Ye, et al. Future perspectives for alkali-activated materials: from existing standards to structural applications. RILEM Tech Lett, 7 (2023), pp. 159-177.
[21]
J.S.J. Van Deventer, R. San Nicolas, I. Ismail, S.A. Bernal, D.G. Brice, J.L. Provis. Microstructure and durability of alkali-activated materials as key parameters for standardisation. J Sustain Cem-Based Mater, 4 (2) (2015), pp. 116-128.
[22]
British Standards Institute (BSI). BSI PAS 8820-2016: construction materials—alkali-activated cementitious material and concrete. British Standard. British Standards Institute, London (2016).
[23]
VicRoads. Section 703: general concrete paving. Australia Standard. VicRoads, Victoria (2010).
[24]
J.L. Provis, K. Arbi, S.A. Bernal, D. Bondar, A. Buchwald, A. Castel, et al. RILEM TC 247-DTA round robin test: mix design and reproducibility of compressive strength of alkali-activated concretes. Mater Struct, 52 (2019), p. 99.
[25]
G.J.G. Gluth, K. Arbi, S.A. Bernal, D. Bondar, A. Castel, S. Chithiraputhiran, et al. RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes. Mater Struct, 53 (1) (2020), p. 21.
[26]
F. Winnefeld, G.J.G. Gluth, S.A. Bernal, M.C. Bignozzi, L. Carabba, S. Chithiraputhiran, et al. RILEM TC 247-DTA round robin test: sulfate resistance, alkali-silica reaction and freeze-thaw resistance of alkali-activated concretes. Mater Struct, 53 (6) (2020), p. 140.
[27]
Z. Li, Y. Chen, J.L. Provis, Ö. Cizer, G. Ye. Autogenous shrinkage of alkali-ativated slag: a critical review. Cement Concr Res, 172 (2023), Article 107244.
[28]
Wang Y. Zheng Z. Zhang K. Liu Y. Li L. Shi, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review. Engineering, 6 (6) (2020), pp. 695-706.
[29]
G.J.G. Gluth, X. Ke, A. Vollpracht, L. Weiler, S.A. Bernal, M. Cyr, et al. Carbonation rate of alkali-activated concretes and high-volume SCM concretes: a literature data analysis by RILEM TC 281-CCC. Mater Struct, 55 (8) (2022), p. 225.
[30]
E. Crossin. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J Clean Prod, 95 (2015), pp. 101-108.
[31]
L. Brinkman, S.A. Miller. Environmental impacts and environmental justice implications of supplementary cementitious materials for use in concrete. Environ Res Infrastruct Sustain, 1 (2) (2021), Article 025003.
AI Summary AI Mindmap
PDF(849 KB)

Accesses

Citations

Detail

Sections
Recommended

/