Highly Aromatic Norditerpenoid Heterodimers and Monomers from Trigonostemon fragilis

Jun-Su Zhou, Long Cheng, Yuan Gao, Zhan-Peng Ge, Bin Zhou, Jing-Ya Li, Jin-Xin Zhao, Jian-Min Yue

Engineering ›› 2024, Vol. 38 ›› Issue (7) : 144-154.

PDF(2665 KB)
PDF(2665 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 144-154. DOI: 10.1016/j.eng.2023.09.015
Research
Article

Highly Aromatic Norditerpenoid Heterodimers and Monomers from Trigonostemon fragilis

Author information +
History +

Abstract

Four new norditerpenoid heterodimers with different dimerization patterns—namely, trigofragiloids A-C (denoted as compounds 1-3) and (+)- and (−)-trigofragiloid D (compound 4)—and three new phenanthrenone norditerpenoids—namely, trigofragiloids E-G (compounds 5-7)—were isolated from Trigonostemon fragilis. Compounds 1 and 2 feature a novel heterodimeric carbon skeleton formed by the conjugation of a tetra-norditerpenoid and an ennea-norditerpenoid; they have been identified as class 2 atropisomers by means of quantum chemical calculations. Compound 3 is an unprecedented phenylpropanoid-norditerpenoid adduct with a new dimerization pattern. Compounds (+)- and (−)-4 are the first example of S-shaped 1,4-dioxane-fused norditerpenoid dimers. Inspired by the structure elucidation of compound 4, two co-occurring analogues, actephilol A and epiactephilol A, were structurally revised as a pair of geometrical isomers and were identified as two pairs of enantiomers, (+)- and (−)-8 and (+)- and (−)-9, respectively. Their structures were characterized using a combined method. Notably, compound 7 exhibits remarkable adenosine triphosphate-citrate lyase (ACLY) inhibition with a half-maximal inhibition concentration (IC50) value of (0.46 ± 0.11) μmol∙L−1, as active as the positive control BMS-303141, and a molecular docking study offers deep insight into the interaction between compound 7 and ACLY.

Graphical abstract

Keywords

Norditerpenoid heterodimer / Trigonostemon fragilis / Euphorbiaceae / Trigofragiloid / Structural revision / Adenosine triphosphate-citrate lyase (ACLY) inhibitory activity

Cite this article

Download citation ▾
Jun-Su Zhou, Long Cheng, Yuan Gao, Zhan-Peng Ge, Bin Zhou, Jing-Ya Li, Jin-Xin Zhao, Jian-Min Yue. Highly Aromatic Norditerpenoid Heterodimers and Monomers from Trigonostemon fragilis. Engineering, 2024, 38(7): 144‒154 https://doi.org/10.1016/j.eng.2023.09.015

References

[1]
K. Song, M. Li, Y. Yang, Z. Zhang, J. Zhang, Q. Zhu, et al. Trigonostemon species in south China: insights on its chemical constituents towards pharmacological applications. J Ethnopharmacol, 281 (2021), Article 114504
[2]
J.B. Xu, J.M. Yue. Recent studies on the chemical constituents of Trigonostemon plants. Org Chem Front, 1 (10) (2014), pp. 1225-1252
[3]
S.F. Li, Y. Zhang, N. Huang, Y.T. Zheng, Y.T. Di, S.L. Li, et al. Daphnane diterpenoids from the stems of Trigonostemon lii and their anti-HIV-1 activity. Phytochemistry, 93 (2013), pp. 216-221
[4]
Y.Y. Cheng, H. Chen, H.P. He, Y. Zhang, S.F. Li, G.H. Tang, et al. Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum. Phytochemistry, 96 (2013), pp. 360-369
[5]
P.M. Allard, P. Leyssen, M.T. Martin, M. Bourjot, V. Dumontet, C. Eydoux, et al. Antiviral chlorinated daphnane diterpenoid orthoesters from the bark and wood of Trigonostemon cherrieri. Phytochemistry, 84 (2012), pp. 160-168
[6]
L. Zhang, R.H. Luo, F. Wang, M.Y. Jiang, Z.J. Dong, L.M. Yang, et al. Highly functionalized daphnane diterpenoids from Trigonostemon thyrsoideum. Org Lett, 12 (1) (2010), pp. 152-155
[7]
L. Zhang, R.H. Luo, F. Wang, Z.J. Dong, L.M. Yang, Y.T. Zheng, et al. Daphnane diterpenoids isolated from Trigonostemon thyrsoideum as HIV-1 antivirals. Phytochemistry, 71 (16) (2010), pp. 1879-1883
[8]
S.H. Dong, C.R. Zhang, C.H. Xu, J. Ding, J.M. Yue. Daphnane-type diterpenoids from Trigonostemon howii. J Nat Prod, 74 (5) (2011), pp. 1255-1261
[9]
S.H. Dong, H.B. Liu, C.H. Xu, J. Ding, J.M. Yue. Constituents of Trigonostemon heterophyllus. J Nat Prod, 74 (12) (2011), pp. 2576-2581
[10]
B.D. Lin, M.L. Han, Y.C. Ji, H.D. Chen, S.P. Yang, S. Zhang, et al. Trigoxyphins A-G: diterpenes from Trigonostemon xyphophylloides. J Nat Prod, 73 (7) (2010), pp. 1301-1305
[11]
H.D. Chen, X.F. He, J. Ai, M.Y. Geng, J.M. Yue. Trigochilides A and B, two highly modified daphnane-type diterpenoids from Trigonostemon chinensis. Org Lett, 11 (18) (2009), pp. 4080-4083
[12]
A. Tempeam, N. Thasana, C. Pavaro, W. Chuakul, P. Siripong, S. Ruchirawat. A new cytotoxic daphnane diterpenoid, rediocide G, from Trigonostemon reidioides. Chem Pharm Bull, 53 (10) (2005), pp. 1321-1323
[13]
P. Kaemchantuek, R. Chokchaisiri, S. Prabpai, P. Kongsaeree, W. Chunglok, T. Utaipan, et al. Terpenoids with potent antimycobacterial activity against Mycobacterium tuberculosis from Trigonostemon reidioides roots. Tetrahedron, 73 (12) (2017), pp. 1594-1601
[14]
Y.X. Li, W.J. Zuo, W.L. Mei, H.Q. Chen, H.F. Dai. A new diterpene from the stems of Trigonostemon heterophyllus. Chin J Nat Med, 12 (4) (2014), pp. 297-299
[15]
G.H. Tang, Y. Zhang, C.M. Yuan, Y. Li, Y.C. Gu, Y.T. Di, et al.Trigohowilols A-G, degraded diterpenoids from the stems of Trigonostemon howii. J Nat Prod, 75 (11) (2012), pp. 1962-1966
[16]
S. Yin, Z.S. Su, Z.W. Zhou, L. Dong, J.M. Yue. Antimicrobial diterpenes from Trigonostemon chinensis. J Nat Prod, 71 (8) (2008), pp. 1414-1417
[17]
Y. Xi, L. An, X. Yang, Z. Song, J. Zhang, M. Tuerhong, et al. NO inhibitory phytochemicals as potential anti-inflammatory agents from the twigs of Trigonostemon heterophyllus. Bioorg Chem, 87 (2019), pp. 417-424
[18]
C. Yang, T. Zhou, S. Han, X. Wang, X. Dong, P. Bo. Lutescins A and B, two new ellagitannins from the twigs of Trigonostemon lutescens and their antiproliferative activity. Fitoterapia, 130 (2018), pp. 31-36
[19]
T. Utaipan, A. Suksamrarn, P. Kaemchantuek, R. Chokchaisiri, W. Stremmel, W. Chamulitrat, et al. Diterpenoid trigonoreidon B isolated from Trigonostemon reidioides alleviates inflammation in models of LPS-stimulated murine macrophages and inflammatory liver injury in mice. Biomed Pharmacother, 101 (2018), pp. 961-971
[20]
J. Xu, M. Peng, X. Sun, X. Liu, L. Tong, G. Su, et al. Bioactive diterpenoids from Trigonostemon chinensis: structures, NO inhibitory activities, and interactions with iNOS. Bioorg Med Chem Lett, 26 (19) (2016), pp. 4785-4789
[21]
J. Ma, X. Yang, P. Wang, B. Dong, G. Su, M. Tuerhong, et al. Phytochemicals with NO inhibitory effects and interactions with iNOS protein from Trigonostemon howii. Bioorg Chem, 75 (2017), pp. 71-77
[22]
F. Liu, X. Yang, J. Ma, Y. Yang, C. Xie, M. Tuerhong, et al. Nitric oxide inhibitory daphnane diterpenoids as potential anti-neuroinflammatory agents for AD from the twigs of Trigonostemon thyrsoideus. Bioorg Chem, 75 (2017), pp. 149-156
[23]
F. Liu, X. Yang, Y. Liang, B. Dong, G. Su, M. Tuerhong, et al. Daphnane diterpenoids with nitric oxide inhibitory activities and interactions with iNOS from the leaves of Trigonostemon thyrsoideus. Phytochemistry, 147 (2018), pp. 57-67
[24]
S.F. Li, H.P. He, X.J. Hao. Three new phenanthrenone constituents from Trigonostemon lii. Nat Prod Res, 29 (19) (2015), pp. 1845-1849
[25]
Y.P. Liu, Q. Wen, S. Hu, Y.L. Ma, Z.H. Jiang, J.Y. Tang, et al. Structurally diverse diterpenoids from Trigonostemon howii. Nat Prod Res, 33 (8) (2019), pp. 1169-1174
[26]
Q. Zhu, C. Tang, A. Mándi, T. Kurtán, Y. Ye. Trigonostemons G and H, dinorditerpenoid dimers with axially chiral biaryl linkage from Trigonostemon chinensis. Chirality, 32 (3) (2020), pp. 265-272
[27]
P.T. Li, X.Y. Zhuang, J.X. Huang, S.Y. He. Notes on Trigonostemon (Euphorbiaceae) for the Flora of China. Harv Pap Bot, 11 (1) (2006), pp. 117-120
[28]
C.S. Yang, S.Q. Han, X. Wang, T. Zhou, X.Y. Dong, P. Bo. RRLC-DAD-ESI-MS based and bioactivity guided phytochemical analysis and separation of coumarins from raw extracts of Trigonostemon lutescens. J Pharm Biomed Anal, 169 (2019), pp. 293-302
[29]
C.S. Yang, S.Q. Han, T. Zhou, X. Wang, X.Y. Dong, P. Bo. Study on coumarins of Trigonostemon lutescens. Chin Tradit Herb Drugs, 49 (24) (2018), pp. 5751-5755
[30]
D.P. Zhang, X.L. Zhou, G.X. Ma, H.L. Song, L.L. Shi, H.Y. Wei. A new lignan from stems of Trigonostemon lutescens. Chin Tradit Herb Drugs, 51 (14) (2020), pp. 3633-3636
[31]
C. Yang, S. Han, X. Shen, X. Wang, P. Bu. Chemical constituents from twigs of Trigonostemon lutescens. Chin Tradit Herb Drugs, 39 (7) (2017), pp. 1427-1430
[32]
Q.C. Qin, Y. He, G.Y. Huang, R.S. Huang, L.B. Li. Studies on chemical constituents of Trigonostemon lutescens. China Med Her, 33 (10) (2014), pp. 1299-1302
[33]
S.S. Ma, W.L. Mei, Z.K. Guo, S.B. Liu, Y.X. Zhao, D.L. Yang, et al. Two new types of bisindole alkaloid from Trigonostemon lutescens. Org Lett, 15 (7) (2013), pp. 1492-1495
[34]
C. Yang, T. Zhou, S. Han, X. Wang, X. Dong, P. Bo. Alkaloids and terpenoids from Trigonostemon lutescens and their potential antiproliferative activity. Chem Nat Compd, 56 (4) (2020), pp. 763-766
[35]
Y.B. Zeng, S.S. Ma, Z.K. Guo, B. Jiang, W.L. Mei, H.F. Dai. A new degraded sesquiterpene from the twigs of Trigonostemon lutescens. Nat Prod Commun, 11 (3) (2016), pp. 369-370
[36]
R.S. Huang, C.X. Ye, Q.C. Qin, F. Lan, Z.H. Ma, L.B. Li. Study on daphnane diterpenoids of Trigonostemon lutescens. Chin Tradit Herb Drugs, 47 (2016), pp. 1079-1083
[37]
H.Q. Yu, H.J. Bai, W.L. Mei, W.J. Zuo, H. Wang, J.L. Yang, et al. Chemical constituents from twigs of Trigonostemon lutescens (II). J Trop Subtrop Bot, 23 (2015), pp. 323-328
[38]
H.D. Chen, S.P. Yang, X.F. He, H.B. Liu, J. Ding, J.M. Yue. Trigochinins D-I: six new daphnane-type diterpenoids from Trigonostemon chinensis. Tetrahedron, 66 (27,28) (2010), pp. 5065-5070
[39]
H.D. Chen, S.P. Yang, X.F. He, J. Ai, Z.K. Liu, H.B. Liu, et al. Trigochinins A-C: three new daphnane-type diterpenes from Trigonostemon chinensis. Org Lett, 12 (6) (2010), pp. 1168-1171
[40]
S.P.B. Ovenden, A.L.S. Yew, R.P. Glover, S. Ng, C.J. Rossant, J.C. Regalado Jr, et al. Actephilol A and epiactephilol A: two novel aromatic terpenoids isolated from Actephila excelsa. Tetrahedron Lett, 42 (43) (2001), pp. 7695-7697
[41]
K.L. Ji, Y.Y. Fan, H.H. Kuok, Q.F. Liu, T. Li, J.M. Yue. Macrocyclic nonapeptides incorporating uncharacterized amino acids with inhibitory effects on Th17 differentiation. CCS Chem, 3 (2) (2020), pp. 844-858
[42]
Z.P. Ge, B. Zhou, F.M. Zimbres, M.B. Cassera, J.X. Zhao, J.M. Yue. Cephalotane-type norditerpenoids from Cephalotaxus fortunei var. alpina. Chin J Chem, 40 (10) (2022), pp. 1177-1184
[43]
J Qi, Y Zhang, Q Liu, H Liu, Y Fan, J. Yue. Clerodenoids A-F: C-ring aromatized and/or rearranged abietane diterpenoids from Clerodendrum chinense var. simplex. Chin J Chem, 39 (7) (2021), pp. 1891-1897
[44]
G.M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Cryst Struct Commun, 71 (1) (2015), pp. 3-8
[45]
G.M. Sheldrick. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Crystallogr, 71 (1) (2015), pp. 3-8
[46]
O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr, 42 (2) (2009), pp. 339-341
[47]
X.H. Gao, Y.S. Xu, Y.Y. Fan, L.S. Gan, J.P. Zuo, J.M. Yue. Cascarinoids A-C, a class of diterpenoid alkaloids with unpredicted conformations from Croton cascarilloides. Org Lett, 20 (1) (2018), pp. 228-231
[48]
J.S. Zhou, Q.F. Liu, F.M. Zimbres, J.H. Butler, M.B. Cassera, B. Zhou, et al. Trichloranoids A-D, antimalarial sesquiterpenoid trimers from Chloranthus spicatus. Org Chem Front, 8 (8) (2021), pp. 1795-1801
[49]
P. Wang, T. Hou, F. Xu, F. Luo, H. Zhou, F. Liu, et al. Discovery of flavonoids as novel inhibitors of ATP citrate lyase: structure-activity relationship and inhibition profiles. Int J Mol Sci, 23 (18) (2022), p. 10747
[50]
B. Zhou, D.X. Liu, X.J. Yuan, J.Y. Li, Y.C. Xu, J. Li, et al. (-)- and (+)-securidanes A and B, natural triarylmethane enantiomers: structure and bioinspired total synthesis. Research, 2018 (2018), p. 2674182
[51]
Y.Z. Ge, B. Zhou, R.X. Xiao, X.J. Yuan, H. Zhou, Y.C. Xu, et al. A new class of HIV-1 inhibitors and the target identification via proteomic profiling. Sci China Chem, 61 (11) (2018), pp. 1430-1439
[52]
M. Tene, P. Tane, T.J. de Dieu, J.R. Kuiate, J.D. Connolly. Degraded diterpenoids from the stem bark of Neoboutonia mannii. Phytochem Lett, 1 (2) (2008), pp. 120-124
[53]
C.W. Anson, D.M. Thamattoor. Influence of substituents on the through-space shielding of aromatic rings. J Org Chem, 77 (4) (2012), pp. 1693-1700
[54]
S.R. LaPlante, L.D. Fader, K.R. Fandrick, D.R. Fandrick, O. Hucke, R. Kemper, et al. Assessing atropisomer axial chirality in drug discovery and development. J Med Chem, 54 (20) (2011), pp. 7005-7022
[55]
S.R. LaPlante, P.J. Edwards, L.D. Fader, A. Jakalian, O. Hucke. Revealing atropisomer axial chirality in drug discovery. ChemMedChem, 6 (3) (2011), pp. 505-513
[56]
Z. Dauter, M. Jaskolski. How to read (and understand) volume A of international tables for crystallography: an introduction for nonspecialists. J Appl Crystallogr, 43 (5) (2010), pp. 1150-1171
[57]
T.D. Crawford, M.C. Tam, M.L. Abrams. The current state of ab initio calculations of optical rotation and electronic circular dichroism spectra. J Phys Chem A, 111 (48) (2007), pp. 12057-12068
[58]
C. Diedrich, S. Grimme. Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A, 107 (14) (2003), pp. 2524-2539
[59]
P. Seephonkai, S.G. Pyne, A.C. Willis, W. Lie. Bioactive compounds from the roots of Strophioblachia fimbricalyx. J Nat Prod, 76 (7) (2013), pp. 1358-1364
[60]
F. Olivon, S. Remy, G. Grelier, C. Apel, C. Eydoux, J.C. Guillemot, et al. Antiviral compounds from Codiaeum peltatum targeted by a multi-informative molecular networks approach. J Nat Prod, 82 (2) (2019), pp. 330-340
[61]
C.J. Tan, Y.T. Di, X.J. Hao. Further degraded diterpenoids from the stems of Trigonostemon lii. Nat Prod Commun, 9 (11) (2014), pp. 1545-1546
[62]
C. Granchi. ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism. Eur J Med Chem, 157 (2018), pp. 1276-1291
[63]
X. Feng, L. Zhang, S. Xu, A. Shen. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review. Prog Lipid Res, 77 (2020), Article 101006
[64]
J. Wei, S. Leit, J. Kuai, E. Therrien, S. Rafi, H.J. Harwood Jr, et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature, 568 (7753) (2019), pp. 566-570
AI Summary AI Mindmap
PDF(2665 KB)

Accesses

Citations

Detail

Sections
Recommended

/