Transcription Factors HNF1A, HNF4A, and FOXA2 Regulate Hepatic Cell Protein N-Glycosylation

Vedrana Vičić Bočkor, Nika Foglar, Goran Josipović, Marija Klasić, Ana Vujić, Branimir Plavša, Toma Keser, Samira Smajlović, Aleksandar Vojta, Vlatka Zoldoš

Engineering ›› 2024, Vol. 32 ›› Issue (1) : 57-68.

PDF(2090 KB)
PDF(2090 KB)
Engineering ›› 2024, Vol. 32 ›› Issue (1) : 57-68. DOI: 10.1016/j.eng.2023.09.019
Research
Article

Transcription Factors HNF1A, HNF4A, and FOXA2 Regulate Hepatic Cell Protein N-Glycosylation

Author information +
History +

Abstract

Hepatocyte nuclear factor 1 alpha (HNF1A), hepatocyte nuclear factor 4 alpha (HNF4A), and forkhead box protein A2 (FOXA2) are key transcription factors that regulate a complex gene network in the liver, creating a regulatory transcriptional loop. The Encode and ChIP-Atlas databases identify the recognition sites of these transcription factors in many glycosyltransferase genes. Our in silico analysis of HNF1A, HNF4A, and FOXA2 binding to the ten candidate glyco-genes studied in this work confirms a significant enrichment of these transcription factors specifically in the liver. Our previous studies identified HNF1A as a master regulator of fucosylation, glycan branching, and galactosylation of plasma glycoproteins. Here, we aimed to functionally validate the role of the three transcription factors on downstream glyco-gene transcriptional expression and the possible effect on glycan phenotype. We used the state-of-the-art clustered regularly interspaced short palindromic repeats/dead Cas9 (CRISPR/dCas9) molecular tool for the downregulation of the HNF1A, HNF4A, and FOXA2 genes in HepG2 cells—a human liver cancer cell line. The results show that the downregulation of all three genes individually and in pairs affects the transcriptional activity of many glyco-genes, although downregulation of glyco-genes was not always followed by an unambiguous change in the corresponding glycan structures. The effect is better seen as an overall change in the total HepG2 N-glycome, primarily due to the extension of biantennary glycans. We propose an alternative way to evaluate the N-glycome composition via estimating the overall complexity of the glycome by quantifying the number of monomers in each glycan structure. We also propose a model showing feedback loops with the mutual activation of HNF1A-FOXA2 and HNF4A-FOXA2 affecting glyco-genes and protein glycosylation in HepG2 cells.

Graphical abstract

Keywords

Clustered regularly interspaced short palindromic repeats/dead Cas9 (CRISPR/dCas9) / Epigenetics / Hepatocyte nuclear factor 1 alpha (HNF1A) / Hepatocyte nuclear factor 4 alpha (HNF4A) / Forkhead box protein A2 (FOXA2) / N-glycosylation / HepG2 cells

Cite this article

Download citation ▾
Vedrana Vičić Bočkor, Nika Foglar, Goran Josipović, Marija Klasić, Ana Vujić, Branimir Plavša, Toma Keser, Samira Smajlović, Aleksandar Vojta, Vlatka Zoldoš. Transcription Factors HNF1A, HNF4A, and FOXA2 Regulate Hepatic Cell Protein N-Glycosylation. Engineering, 2024, 32(1): 57‒68 https://doi.org/10.1016/j.eng.2023.09.019

References

[1]
Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., editors. Essentials of glycobiology. 3rd ed. New York City: Cold Spring Harbor Laboratory Press; 2015.
[2]
Nairn AV, Aoki K, dela Rosa M, Porterfield M, Lim JM, Kulik M, et al. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis. J Biol Chem 2012 ;287(45):37835-56.
[3]
A.V. Nairn, W.S. York, K. Harris, E.M. Hall, J.M. Pierce, K.W. Moremen. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J Biol Chem, 283 (25) ( 2008), pp. 17298-17313
[4]
C.T. Thu, L.K. Mahal. Sweet control: microRNA regulation of the glycome. Biochemistry, 59 (34) ( 2020), pp. 3098-3110
[5]
P. Agrawal, T. Kurcon, K.T. Pilobello, J.F. Rakus, S. Koppolu, Z. Liu, et al.. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc Natl Acad Sci USA, 111 (11) ( 2014), pp. 4338-4343
[6]
S. Neelamegham, L.K. Mahal. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr Opin Struct Biol, 40 ( 2016), pp. 145-152
[7]
M. Klasić, J. Krištić, P. Korać, T. Horvat, D. Markulin, A. Vojta, et al.. DNA hypomethylation upregulates expression of the MGAT3 gene in HepG 2 cells and leads to changes in N-glycosylation of secreted glycoproteins. Sci Rep, 6 ( 2016), p. 24363
[8]
A. Vojta, I. Samaržija, L. Bočkor, V. Zoldoš. Glyco-genes change expression in cancer through aberrant methylation. Biochim Biophys Acta Gen Subj, 1860 (8) ( 2016), pp. 1776-1785
[9]
M. Klasić, D. Markulin, A. Vojta, I. Samaržija, I. Biruš, P. Dobrinić, et al.. Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. Clin Epigenetics, 10 ( 2018), p. 75
[10]
C. Reily, T.J. Stewart, M.B. Renfrow, J. Novak. Glycosylation in health and disease. Nat Rev Nephrol, 15 (6) ( 2019), pp. 346-366
[11]
S.R. Stowell, T. Ju, R.D. Cummings. Protein glycosylation in cancer. Annu Rev Pathol Mech Dis, 10 ( 2015), pp. 473-510
[12]
R.H. Costa, V.V. Kalinichenko, A.X.L. Holterman, X. Wang. Transcription factors in liver development, differentiation, and regeneration. Hepatology, 38 (6) ( 2003), pp. 1331-1347
[13]
C.S. Lee, N.J. Sund, R. Behr, P.L. Herrera, K.H. Kaestner. FOXA 2 is required for the differentiation of pancreatic α-cells. Dev Biol, 278 (2) ( 2005), pp. 484-495
[14]
H.H. Lau, N.H.J. Ng, L.S.W. Loo, J.B. Jasmen, A.K.K. Teo. The molecular functions of hepatocyte nuclear factors—in and beyond the liver. J Hepatol, 68 (5) ( 2018), pp. 1033-1048
[15]
Y. Inoue, G.P. Hayhurst, J. Inoue, M. Mori, F.J. Gonzalez. Defective ureagenesis in mice carrying a liver-specific disruption of hepatocyte nuclear factor 4α (HNF4α): HNF4α regulates ornithine transcarbamylase in vivo. J Biol Chem, 277 (28) ( 2002), pp. 25257-25265
[16]
Y. Inoue, L.L. Peters, S.H. Yim, J. Inoue, F.J. Gonzalez. Role of hepatocyte nuclear factor 4α in control of blood coagulation factor gene expression. J Mol Med, 84 (4) ( 2006), pp. 334-344
[17]
Y. Inoue, A.M. Yu, J. Inoue, F.J. Gonzalez. Hepatocyte nuclear factor 4α is a central regulator of bile acid conjugation. J Biol Chem, 279 (4) ( 2004), pp. 2480-2489
[18]
Y. Kamiyama, T. Matsubara, K. Yoshinari, K. Nagata, H. Kamimura, Y. Yamazoe.Role of human hepatocyte nuclear factor 4α in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metab Pharmacokinet, 22 (4) ( 2007), pp. 287-298
[19]
C. Walesky, U. Apte. Role of hepatocyte nuclear factor 4α (HNF4α) in cell proliferation and cancer. Gene Expr, 16 (3) ( 2015), pp. 101-108
[20]
J.W. Hoskins, J. Jia, M. Flandez, H. Parikh, W. Xiao, I. Collins, et al.. Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. Carcinogenesis, 35 (12) ( 2014), pp. 2670-2678
[21]
L. Pelletier, S. Rebouissou, A. Paris, E. Rathahao-Paris, E. Perdu, P. Bioulac-Sage, et al.. Loss of hepatocyte nuclear factor 1α function in human hepatocellular adenomas leads to aberrant activation of signaling pathways involved in tumorigenesis. Hepatology, 51 (2) ( 2010), pp. 557-566
[22]
Z. Luo, Y. Li, H. Wang, J. Fleming, M. Li, Y. Kang, et al.. Hepatocyte nuclear factor 1A (HNF1A) as a possible tumor suppressor in pancreatic cancer. PLoS One, 10 (3) ( 2015), Article e0121082
[23]
A.S. Teeli, K. Łuczyńska, E. Haque, M.A. Gayas, D. Winiarczyk, H. Taniguchi. Disruption of tumor suppressors HNF4α/HNF1α causes tumorigenesis in liver. Cancers, 13 (21) ( 2021), p. 5357
[24]
O. Bluteau, E. Jeannot, P. Bioulac-Sage, J.M. Marqués, J.F. Blanc, H. Bui, et al.. Bi-allelic inactivation of TCF 1 in hepatic adenomas. Nat Genet, 32 (2) ( 2002), pp. 312-315
[25]
S.A. Duncan, M.A. Navas, D. Dufort, J. Rossant, M. Stoffelt. Regulation of a transcription factor network required for differentiation and metabolism. Science, 281 (5377) ( 1998), pp. 692-695
[26]
D.T. Odom, N. Zizlsperger, D.B. Gordon, G.W. Bell, N.J. Rinaldi, H.L. Murray, et al.. Control of pancreas and liver gene expression by HNF transcription factors. Science, 303 (5662) ( 2004), pp. 1378-1381
[27]
Z. Li, G. Tuteja, J. Schug, K.H. Kaestner. FOXA1 and FOXA2 are essential for sexual dimorphism in liver cancer. Cell, 148 (1,2) ( 2012), pp. 72-83
[28]
G. Lauc, A. Essafi, J.E. Huffman, C. Hayward, A. Knežević, J.J. Kattla, et al.. Genomics meets glycomics—the first GWAS study of human N-glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet, 6 (12) ( 2010), Article e1001256
[29]
V. Zoldoš, T. Horvat, M. Novokmet, C. Cuenin, A. Mužinić, M. Pučić, et al.. Epigenetic silencing of HNF1A associates with changes in the composition of the human plasma N-glycome. Epigenetics, 7 (2) ( 2012), pp. 164-172
[30]
G. Josipović, V. Tadić, M. Klasić, V. Zanki, I. Bečeheli, F. Chung, et al.. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system. Nucleic Acids Res, 47 (18) ( 2019), pp. 9637-9657
[31]
A.V. Tyakht, E.N. Ilina, D.G. Alexeev, D.S. Ischenko, A.Y. Gorbachev, T.A. Semashko, et al.. RNA-Seq gene expression profiling of HepG 2 cells: the influence of experimental factors and comparison with liver tissue. BMC Genomics, 15 (1) ( 2014), p. 1108
[32]
S. Oki, T. Ohta, G. Shioi, H. Hatanaka, O. Ogasawara, Y. Okuda, et al.. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep, 19 (12) ( 2018), Article e46255
[33]
Z. Zou, T. Ohta, F. Miura, S. Oki. ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data. Nucleic Acids Res, 50 (W1) ( 2022), pp. W175-W182
[34]
T.D. Schmittgen, K.J. Livak. Analyzing real-time PCR data by the comparative CT method. Nat Protoc, 3 (6) ( 2008), pp. 1101-1108
[35]
C. Berasain, M. Arechederra, J. Argemí, M.G. Fernández-Barrena, M.A. Avila. Loss of liver function in chronic liver disease: an identity crisis. J Hepatol, 78 (2) ( 2023), pp. 401-414
[36]
C.J. Kuo, P.B. Conley, L. Chen, F.M. Sladek, J.E. Darnell Jr, G.R. Crabtree. A transcriptional hierarchy involved in mammalian cell-type specification. Nature, 355 (6359) ( 1992), pp. 457-461
[37]
J.M. Tian, U. Schibler. Tissue-specific expression of the gene encoding hepatocyte nuclear factor 1 may involve hepatocyte nuclear factor 4. Genes Dev, 5 (12A) ( 1991), pp. 2225-2234
[38]
W. Zhong, J. Mirkovitch, J.E. Darnell Jr.. Tissue-specific regulation of mouse hepatocyte nuclear factor 4 expression. Mol Cell Biol, 14 (11) ( 1994), pp. 7276-7284
[39]
NTB Nguyen, J Lin, SJ Tay, Mariati, J Yeo, T Nguyen-Khuong, et al.. Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans. Sci Rep, 11 (1) ( 2021), p. 12969
[40]
A. Wahl, E. van den Akker, L. Klaric, J. Štambuk, E. Benedetti, R. Plomp, et al.. Genome-wide association study on immunoglobulin G glycosylation patterns. Front Immunol, 9 ( 2018), p. 277
[41]
G. Lauc, J.E. Huffman, M. Pučić, L. Zgaga, B. Adamczyk, A. Mužinić, et al.. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet, 9 (1) ( 2013), Article e1003225
[42]
A.S. Shadrina, A.S. Zlobin, O.O. Zaytseva, L. Klarić, S.Z. Sharapov, E.D. Pakhomov, et al.. Multivariate genome-wide analysis of immunoglobulin G N-glycosylation identifies new loci pleiotropic with immune function. Hum Mol Genet, 30 (13) ( 2021), pp. 1259-1270
[43]
Klarić L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Esko T, et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci Adv 2020 ;6(8):eaax0301.
[44]
A. Landini, I. Trbojević-Akmačić, P. Navarro, Y.A. Tsepilov, S.Z. Sharapov, F. Vučković, et al.. Genetic regulation of post-translational modification of two distinct proteins. Nat Commun, 13 (1) ( 2022), p. 1586
[45]
I. Trbojević-Akmačić, G.S.M. Lageveen-Kammeijer, B. Heijs, T. Petrović, H. Deriš, M. Wuhrer, et al.. High-throughput glycomic methods. Chem Rev, 122 (20) ( 2022), pp. 15865-15913
[46]
G. Thanabalasingham, J.E. Huffman, J.J. Kattla, M. Novokmet, I. Rudan, A.L. Gloyn, et al.. Mutations in HNF1A result in marked alterations of plasma glycan profile. Diabetes, 62 (4) ( 2013), pp. 1329-1337
[47]
A. Mijakovac, K. Miškec, J. Krištić, V.V. Bočkor, V. Tadić, M. Bošković, et al.. A transient expression system with stably integrated CRISPR-dCas 9 fusions for regulation of genes involved in immunoglobulin G glycosylation. CRISPR J, 5 (2) ( 2022), pp. 237-253
[48]
A. Mijakovac, J. Jurić, W.M. Kohrt, J. Krištić, D. Kifer, K.M. Gavin, et al.. Effects of estradiol on immunoglobulin G glycosylation: mapping of the downstream signaling mechanism. Front Immunol, 12 ( 2021), Article 680227
[49]
Frkatović-Hodžić A, Miškec K, Mijakovac A, Nostaeva A, Sharapov SZ, Landini A, et al. Mapping of the gene network that regulates glycan clock of ageing. 2023. medRxiv: 2023.04.25.23289027.
[50]
A. Cvetko, M. Mangino, M. Tijardović, D. Kifer, M. Falchi, T. Keser, et al.. Plasma N-glycome shows continuous deterioration as the diagnosis of insulin resistance approaches. BMJ Open Diabetes Res Care, 9 (1) ( 2021), Article e002263
AI Summary AI Mindmap
PDF(2090 KB)

Accesses

Citations

Detail

Sections
Recommended

/