3D Printing Strategies for Precise and Functional Assembly of Silk-based Biomaterials

Xiaoliang Cui, Jun Zhang, Yan Qian, Siqi Chang, Benjamin J. Allardyce, Rangam Rajkhowa, Hui Wang, Ke-Qin Zhang

Engineering ›› 2024, Vol. 34 ›› Issue (3) : 92-108.

PDF(6064 KB)
PDF(6064 KB)
Engineering ›› 2024, Vol. 34 ›› Issue (3) : 92-108. DOI: 10.1016/j.eng.2023.09.022
Research

3D Printing Strategies for Precise and Functional Assembly of Silk-based Biomaterials

Author information +
History +

Abstract

In recent years, significant progress has been made in both three-dimensional (3D) printing technologies and the exploration of silk as an ink to produce biocompatible constructs. Combined with the unlimited design potential of 3D printing, silk can be processed into a broad range of functional materials and devices for various biomedical applications. The ability of silk to be processed into various materials, including solutions, hydrogels, particles, microspheres, and fibers, makes it an excellent candidate for adaptation to different 3D printing techniques. This review presents a didactic overview of the 3D printing of silk-based materials, major categories of printing techniques, and their prototyping mechanisms and structural features. In addition, we provide a roadmap for researchers aiming to incorporate silk printing into their own work by summarizing promising strategies from both technical and material aspects, to relate state-of-the-art silk-based material processing with fast-developing 3D printing technologies. Thus, our focus is on elucidating the techniques and strategies that advance the development of precise assembly strategies for silk-based materials. Precise printing (including high printing resolution, complex structure realization, and printing fidelity) is a prerequisite for the digital design capability of 3D printing technology and would definitely broaden the application era of silk, such as complex biomimetic tissue structures, vasculatures, and transdermal microneedles.

Graphical abstract

Keywords

3D printing / Bioink / Bioprinting / Silk fibroin

Cite this article

Download citation ▾
Xiaoliang Cui, Jun Zhang, Yan Qian, Siqi Chang, Benjamin J. Allardyce, Rangam Rajkhowa, Hui Wang, Ke-Qin Zhang. 3D Printing Strategies for Precise and Functional Assembly of Silk-based Biomaterials. Engineering, 2024, 34(3): 92‒108 https://doi.org/10.1016/j.eng.2023.09.022

References

[1]
N. Guo, M.C. Leu. Additive manufacturing: technology, applications and research needs. Front Mech Eng, 8 (3) (2013), pp. 215-243.
[2]
Y. Song, Y. Yan, R. Zhang, D. Xu, F. Wang. Manufacture of the die of an automobile deck part based on rapid prototyping and rapid tooling technology. J Mater Process Technol, 120 (1-3) (2002), pp. 237-242.
[3]
Vilaro T, Abed S, Knapp W. Direct manufacturing of technical parts using selective laser melting:example of automotive application. In: Proceedings of 12th European Forum on Rapid Prototyping; 2008 Mar 5-6; Paris, France. Paris: French Rapid Prototyping and additive manufacturing Association (AFPR); 2008.
[4]
J. Giannatsis, V. Dedoussis. Additive fabrication technologies applied to medicine and health care: a review. Int J Adv Manuf Technol, 40 (1-2) (2009), pp. 116-127.
[5]
E. Sachlos. J. Czernuszka. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 5 (2003), pp. 29-40.
[6]
L. Moroni, J.A. Burdick, C. Highley, S.J. Lee, Y. Morimoto, S. Takeuchi, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater, 3 (5) (2018), pp. 21-37.
[7]
Y. Chen, J. Zhang, X. Liu, S. Wang, J. Tao, Y. Huang, et al. Noninvasive in vivo 3D bioprinting. Sci Adv, 6 (23) (2020), eaba7406.
[8]
S. Kyle, Z.M. Jessop, A. Al-Sabah, I.S. Whitaker. ‘Printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art. Adv Healthc Mater, 6 (16) (2017), p. 1700264.
[9]
S. Kundu (Ed.), Silk biomaterials for tissue engineering and regenerative medicine, Elsevier, Amsterdam (2014).
[10]
B. Kundu, R. Rajkhowa, S.C. Kundu, X. Wang. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev, 65 (4) (2013), pp. 457-470.
[11]
Y. Yang, X. Chen, F. Ding, P. Zhang, J. Liu, X. Gu. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 28 (9) (2007), pp. 1643-1652.
[12]
S. Hofmann, H. Hagenmüller, A.M. Koch, R. Müller, G. Vunjak-Novakovic, D.L. Kaplan, et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials, 28 (6) (2007), pp. 1152-1162.
[13]
Y.P. Singh, N. Bhardwaj, B.B. Mandal. Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering. ACS Appl Mater Interfaces, 8 (33) (2016), pp. 21236-21249.
[14]
L. Shi, F. Wang, W. Zhu, Z. Xu, S. Fuchs, J. Hilborn, et al. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv Funct Mater, 27 (37) (2017), p. 1700591.
[15]
M.J. Rodriguez, J. Brown, J. Giordano, S.J. Lin, F.G. Omenetto, D.L. Kaplan. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials, 117 (2017), pp. 105-115.
[16]
S.Y. Park, C.S. Ki, Y.H. Park, H.M. Jung, K.M. Woo, H.J. Kim. Electrospun silk fibroin scaffolds with macropores for bone regeneration: an in vitro and in vivo study. Tissue Eng Part A, 16 (4) (2010), pp. 1271-1279.
[17]
W. Zhang, J. He, X. Li, Y. Liu, W. Bian, D. Li, et al. Fabrication and in vivo implantation of ligament-bone composite scaffolds based on three-dimensional printing technique. Chin J Repar Reconstr Surg, 28 (3) (2014), pp. 314-317.Chinese.
[18]
J. Melke, S. Midha, S. Ghosh, K. Ito, S. Hofmann. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 31 (2016), pp. 1-16.
[19]
C.H. Chen, J. Liu, C.K. Chua, S.M. Chou, V. Shyu, J.P. Chen. Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology. Materials, 7 (3) (2014), pp. 2104-2119.
[20]
N. Bhardwaj, Q.T. Nguyen, A.C. Chen, D.L. Kaplan, R.L. Sah, S.C. Kundu. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials, 32 (25) (2011), pp. 5773-5781.
[21]
C. Vepari, D.L. Kaplan. Silk as a biomaterial. Prog Polym Sci, 32 (8-9) (2007), pp. 991-1007.
[22]
Y.K. Seo, H.H. Yoon, K.Y. Song, S.Y. Kwon, H.S. Lee, Y.S. Park, et al. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. J Orthop Res, 27 (4) (2009), pp. 495-503.
[23]
ISO/ASTM 52900:2015E: Standard terminology for additive manufacturing-general principles-terminology. ISO and ASTM standard. New York: The World Trade Organization Technical Barriers to Trade (TBT) Committee; 2015.
[24]
Wohlers T, Campbell RI, Huff R, Diegel O, Kowen J. 3D printing and additive manufacturing state of the industry 2019 Wohlers Report. Report. Colorado: Wohlers Associates; 2019.
[25]
J. Zhang, B.J. Allardyce, R. Rajkhowa, X. Wang, X. Liu. 3D printing of silk powder by binder jetting technique. Addit Manuf, 38 (2021), 101820.
[26]
G. Thilagavathi, S. Viju. Silk as a suture material. Advances in Silk Science and Technology, Woodhead Publishing, Cambridge (2015), pp. 219-232.
[27]
Y. Huang, G. Sun, L. Lyu, Y. Li, D. Li, Q. Fan, et al. Dityrosine-inspired photocrosslinking technique for 3D printing of silk fibroin-based composite hydrogel scaffolds. Soft Matter, 18 (19) (2022), pp. 3705-3712.
[28]
K. Luo, Y. Yang, Z. Shao. Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv Funct Mater, 26 (6) (2016), pp. 872-880.
[29]
P.H.G. Chao, S. Yodmuang, X. Wang, L. Sun, D.L. Kaplan, G. Vunjak-Novakovic. Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater, 95B (1) (2010), pp. 84-90.
[30]
U.J. Kim, J. Park, C. Li, H.J. Jin, R. Valluzzi, D.L. Kaplan. Structure and properties of silk hydrogels. Biomacromolecules, 5 (3) (2004), pp. 786-792.
[31]
J. Rnjak-Kovacina, L.S. Wray, K.A. Burke, T. Torregrosa, J.M. Golinski, W. Huang, et al. Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater Sci Eng, 1 (4) (2015), pp. 260-270.
[32]
S.S. Silva, A. Motta, M.T. Rodrigues, A.F. Pinheiro, M.E. Gomes, J.F. Mano, et al. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules, 9 (10) (2008), pp. 2764-2774.
[33]
S. Lu, X. Wang, Q. Lu, X. Zhang, J.A. Kluge, N. Uppal, et al. Insoluble and flexible silk films containing glycerol. Biomacromolecules, 11 (1) (2010), pp. 143-150.
[34]
M.K. Gupta, S.K. Khokhar, D.M. Phillips, L.A. Sowards, L.F. Drummy, M.P. Kadakia, et al. Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth. Langmuir, 23 (3) (2007), pp. 1315-1319.
[35]
B.J. Allardyce, M. Atlas, R. Dilley, X. Wang. Silk films as a repair material for perforations of the tympanic membrane. B. Allardyce, R. Rajkhowa, M.D. Atlas, R.J. Dilley, X. Wang (Eds.), Proceedings of the 89th Textile Institute World Conference; 2014 Dec 2-6; Fiber Society, Wuhan, China. Tokyo (2014), pp. 6-10.
[36]
Yu Z. SF/chitosan scaffold material for liver tissue engineering [dissertation]. Beijing: Tsinghua University; 2009.
[37]
B. Lotz, C.F. Colonna. The chemical structure and the crystalline structures of Bombyx mori silk fibroin. Biochimie, 61 (2) (1979), pp. 205-214.
[38]
C.Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z.G. Li, J. Janin. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins, 44 (2) (2001), pp. 119-122.
[39]
C.Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, et al. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res, 28 (12) (2000), pp. 2413-2419.
[40]
G. Xu, L. Gong, Z. Yang, X.Y. Liu. What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter, 10 (13) (2014), pp. 2116-2123.
[41]
L.F. Drummy, B.L. Farmer, R.R. Naik. Correlation of the beta-sheet crystal size in silk fibers with the protein amino acid sequence. Soft Matter, 3 (7) (2007), pp. 877-882.
[42]
Hodgkinson T. Silk fibroin biomaterials for skin tissue engineering applications [dissertation]. Manchester: University of Manchester; 2014.
[43]
R. Valluzzi, S.P. Gido, W. Muller, D.L. Kaplan. Orientation of silk III at the air-water interface. Int J Biol Macromol, 24 (2-3) (1999), pp. 237-242.
[44]
J. Zhang, B.J. Allardyce, R. Rajkhowa, Y. Zhao, R.J. Dilley, S.L. Redmond, et al. 3D printing of silk particle-reinforced chitosan hydrogel structures and their properties. ACS Biomater Sci Eng, 4 (8) (2018), pp. 3036-3046.
[45]
J. Zhang, B.J. Allardyce, R. Rajkhowa, S. Kalita, R.J. Dilley, X. Wang, et al. Silk particles, microfibres and nanofibres: a comparative study of their functions in 3D printing hydrogel scaffolds. Mater Sci Eng C, 103 (2019), 109784.
[46]
R. Zhang, Y. Tao, Q. Xu, N. Liu, P. Chen, Y. Zhou, et al. Rheological and ion-conductive properties of injectable and self-healing hydrogels based on xanthan gum and silk fibroin. Int J Biol Macromol, 144 (2020), pp. 473-482.
[47]
C. Vyas, J. Zhang, Ø. Øvrebø, B. Huang, I. Roberts, M. Setty, et al. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Mater Sci Eng C, 118 (2021), 111433.
[48]
M. Umar, W.Y. Li, G.E. Bonacchini, K. Min, S. Arif, F.G. Omenetto, et al. Inkjet-printed lasing silk text on reusable distributed feedback boards. Opt Mater Express, 10 (3) (2020), pp. 818-830.
[49]
L. Ma, A. Patil, R. Wu, Y. Zhang, Z. Meng, W. Zhang, et al. A capacitive humidity sensor based on all-protein embedded with gold nanoparticles @carbon composite for human respiration detection. Nanotechnology, 32 (19) (2021), 19LT01.
[50]
M.K. DeBari, M.N. Keyser, M.A. Bai, R.D. Abbott. 3D printing with silk: considerations and applications. Connect Tissue Res, 61 (2) (2020), pp. 163-173.
[51]
X.H. Tan, L. Liu, A. Mitryashkin, Y.Y. Wang, J.C.H. Goh. Silk fibroin as a bioink—a thematic review of functionalization strategies for bioprinting applications. ACS Biomater Sci Eng, 8 (8) (2022), pp. 3242-3270.
[52]
P. Rider, Y. Zhang, C. Tse, Y. Zhang, D. Jayawardane, J. Stringer, et al. Biocompatible silk fibroin scaffold prepared by reactive inkjet printing. J Mater Sci, 51 (18) (2016), pp. 8625-8630.
[53]
A. Antic, J. Zhang, N. Amini, D. Morton, K. Hapgood. Screening pharmaceutical excipient powders for use in commercial 3D binder jetting printers. Adv Powder Technol, 32 (7) (2021), pp. 2469-2483.
[54]
H. Tao, B. Marelli, M. Yang, B. An, M.S. Onses, J.A. Rogers, et al. Inkjet printing of regenerated silk fibroin: from printable forms to printable functions. Adv Mater, 27 (29) (2015), pp. 4273-4279.
[55]
P.M. Rider, I.M. Brook, P.J. Smith, C.A. Miller. Reactive inkjet printing of regenerated silk fibroin films for use as dental barrier membranes. Micromachines, 9 (2) (2018), p. 46.
[56]
D.A. Gregory, P. Kumar, A. Jimenez-Franco, Y. Zhang, Y. Zhang, S.J. Ebbens, et al. Reactive inkjet printing and propulsion analysis of silk-based self-propelled micro-stirrers. Jove-J Vis Exp, 146 (2019), e59030.
[57]
Y. Zhang, D.A. Gregory, Y. Zhang, P.J. Smith, S.J. Ebbens, X. Zhao. Reactive inkjet printing of functional silk stirrers for enhanced mixing and sensing. Small, 15 (1) (2019), p. 1804213.
[58]
Z. Liu, Z. Zhou, S. Zhang, L. Sun, Z. Shi, Y. Mao, et al. “Print-to-pattern”: silk-based water lithography. Small, 14 (47) (2018), p. 1802953.
[59]
S. Limem, P. Calvert, H.J. Kim, D.L. Kaplan. Differentiation of bone marrow stem cells on inkjet printed silk lines. MRS Proc, 950 (2006).
[60]
R. Suntivich, I. Drachuk, R. Calabrese, D.L. Kaplan, V.V. Tsukruk. Inkjet printing of silk nest arrays for cell hosting. Biomacromolecules, 15 (4) (2014), pp. 1428-1435.
[61]
I. Drachuk, R. Suntivich, R. Calabrese, S. Harbaugh, N. Kelley-Loughnane, D.L. Kaplan, et al. Printed dual cell arrays for multiplexed sensing. ACS Biomater Sci Eng, 1 (5) (2015), pp. 287-294.
[62]
A.M. Compaan, K. Christensen, Y. Huang. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater Sci Eng, 3 (8) (2017), pp. 1519-1526.
[63]
J.N. Huang, Z.J. Xu, W. Qiu, F. Chen, Z.H. Meng, C. Hou, et al. Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv Funct Mater, 30 (13) (2020), p. 1910547.
[64]
C. Guo, C. Li, H.V. Vu, P. Hanna, A. Lechtig, Y. Qiu, et al. Thermoplastic moulding of regenerated silk. Nat Mater, 19 (1) (2020), pp. 102-108.
[65]
J. Cesarano, R. Segalman, P. Calvert. Robocasting provides mouldless fabrication from slurry deposition. Ceram Ind, 148 (4) (1998), pp. 94-96.
[66]
Cesarano J III. Calvert P, inventor. Corporation S, assignee. Freeforming objects with low-binder slurry. United States patent US 06027326A. 2000 Feb 22.
[67]
M. Mooney. Explicit formulas for slip and fluidity. J Rheol, 2 (2) (1931), pp. 210-222.
[68]
R.H. Christopher, S. Middleman. Power-law flow through a packed tube. Ind Eng Chem Fundam, 4 (4) (1965), pp. 422-426.
[69]
M. Schaffner, J.A. Faber, L. Pianegonda, P.A. Rühs, F. Coulter, A.R. Studart. 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat Commun, 9 (1) (2018), p. 878.
[70]
S.V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat Biotechnol, 32 (8) (2014), pp. 773-785.
[71]
X. Mu, C. Gonzalez-Obeso, Z. Xia, J.K. Sahoo, G. Li, P. Cebe, et al. 3D printing of monolithic proteinaceous cantilevers using regenerated silk fibroin. Molecules, 27 (7) (2022), p. 2148.
[72]
E. Kim, J.M. Seok, S.B. Bae, S.A. Park, W.H. Park. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting. Biomacromolecules, 22 (5) (2021), pp. 1921-1931.
[73]
F.B. Kadumudi, M. Hasany, M.K. Pierchala, M. Jahanshahi, N. Taebnia, M. Mehrali, et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels. Adv Mater, 33 (35) (2021), p. 2100047.
[74]
L. Huang, W. Yuan, Y. Hong, S. Fan, X. Yao, T. Ren, et al. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. Cellulose, 28 (1) (2021), pp. 241-257.
[75]
J. Yang, C. Deng, M. Shafiq, Z. Li, Q. Zhang, H. Du, et al. Localized delivery of FTY-720 from 3D printed cell-laden gelatin/silk fibroin composite scaffolds for enhanced vascularized bone regeneration. Smart Mater Med, 3 (2022), pp. 217-229.
[76]
X. Mu, Y. Wang, C. Guo, Y. Li, S. Ling, W. Huang, et al. 3D printing of silk protein structures by aqueous solvent-directed molecular assembly. Macromol Biosci, 20 (1) (2020), p. 1900191.
[77]
Y.P. Singh, A. Bandyopadhyay, B.B. Mandal. 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. ACS Appl Mater Interfaces, 11 (37) (2019), pp. 33684-33696.
[78]
S. Das, F. Pati, Y.J. Choi, G. Rijal, J.H. Shim, S.W. Kim, et al. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater, 11 (2015), pp. 233-246.
[79]
M. Milazzo, V. Fitzpatrick, C.E. Owens, I.M. Carraretto, G.H. McKinley, D.L. Kaplan, et al. 3D printability of silk/hydroxyapatite composites for microprosthetic applications. ACS Biomater Sci Eng, 9 (3) (2023), pp. 1285-1295.
[80]
S. Ghosh, S.T. Parker, X. Wang, D.L. Kaplan, J.A. Lewis. Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater, 18 (13) (2008), pp. 1883-1889.
[81]
M.J. Rodriguez, T.A. Dixon, E. Cohen, W. Huang, F.G. Omenetto, D.L. Kaplan. 3D freeform printing of silk fibroin. Acta Biomater, 71 (2018), pp. 379-387.
[82]
P. Ng, A.R. Pinho, M.C. Gomes, Y. Demidov, E. Krakor, D. Grume, et al. Fabrication of antibacterial, osteo-inductor 3D printed aerogel-based scaffolds by incorporation of drug laden hollow mesoporous silica microparticles into the self-assembled silk fibroin biopolymer. Macromol Biosci, 22 (4) (2022), p. 2100442.
[83]
D. Gong, Q. Lin, Z. Shao, X. Chen, Y. Yang. Preparing 3D-printable silk fibroin hydrogels with robustness by a two-step crosslinking method. RSC Adv, 10 (45) (2020), pp. 27225-27234.
[84]
D.L. Heichel, J.A. Tumbic, M.E. Boch, A.W. Ma, K.A. Burke. Silk fibroin reactive inks for 3D printing crypt-like structures. Biomed Mater, 15 (5) (2020), 055037.
[85]
M. Zhou, X. Wu, J. Luo, G. Yang, Y. Lu, S. Lin, et al. Copper peptide-incorporated 3D-printed silk-based scaffolds promote vascularized bone regeneration. Chem Eng J, 422 (2021), 130147.
[86]
A. Sharma, P. Rawal, D.M. Tripathi, D. Alodiya, S.K. Sarin, S. Kaur, et al. Upgrading hepatic differentiation and functions on 3D printed silk-decellularized liver hybrid scaffolds. ACS Biomater Sci Eng, 7 (8) (2021), pp. 3861-3873.
[87]
S. Jiang, Z. Yu, L. Zhang, G. Wang, X. Dai, X. Lian, et al. Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells. Regen Biomater, 8(4):rbab028 (2021).
[88]
X.H. Li, X. Zhu, X.Y. Liu, H.H. Xu, W. Jiang, J.J. Wang, et al. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats. J Mater Sci: Mater Med, 32 (4) (2021), pp. 31-32.
[89]
H. Li, N. Li, H. Zhang, Y. Zhang, H. Suo, L. Wang, et al. Three-dimensional bioprinting of perfusable hierarchical microchannels with alginate and silk fibroin double cross-linked network. 3D Print Addit Manuf, 7 (2020), pp. 78-84.
[90]
Z. Zheng, J. Wu, M. Liu, H. Wang, C. Li, M.J. Rodriguez, et al. 3D bioprinting of self-standing silk-based bioink. Adv Healthc Mater, 7 (6) (2018), p. 1701026.
[91]
V. Fitzpatrick, Z. Martín-Moldes, A. Deck, R. Torres-Sanchez, A. Valat, D. Cairns, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials, 276 (2021), 120995.
[92]
Q. Li, S. Xu, Q. Feng, Q. Dai, L. Yao, Y. Zhang, et al. 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration. Bioact Mater, 6 (10) (2021), pp. 3396-3410.
[93]
B.K. Bhunia, S. Dey, A. Bandyopadhyay, B.B. Mandal. 3D printing of annulus fibrosus anatomical equivalents recapitulating angle-ply architecture for intervertebral disc replacement. Appl Mater Today, 23 (2021), 101031.
[94]
N. Karamat-Ullah, Y. Demidov, M. Schramm, D. Grumme, J. Auer, C. Bohr, et al. 3D printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modified silk fibroin with silica nanostructure. ACS Biomater Sci Eng, 7 (9) (2021), pp. 4545-4556.
[95]
P. Dorishetty, R. Balu, A. Gelmi, J.P. Mata, N.K. Dutta, N.R. Choudhury. 3D printable soy/silk hybrid hydrogels for tissue engineering applications. Biomacromolecules, 22 (9) (2021), pp. 3668-3678.
[96]
H. Maleki, S. Montes, N. Hayati-Roodbari, F. Putz, N. Huesing. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure—an approach towards 3D printing of aerogels. ACS Appl Mater Interfaces, 10 (26) (2018), pp. 22718-22730.
[97]
P. Dorishetty, R. Balu, S.S. Athukoralalage, T.L. Greaves, J. Mata, L. De Campo, et al. Tunable biomimetic hydrogels from silk fibroin and nanocellulose. ACS Sustain Chem & Eng, 8 (6) (2020), pp. 2375-2389.
[98]
N. Zhong, T. Dong, Z. Chen, Y. Guo, Z. Shao, X. Zhao. A novel 3D-printed silk fibroin-based scaffold facilitates tracheal epithelium proliferation in vitro. J Biomater Appl, 34 (1) (2019), pp. 3-11.
[99]
S.B. Bon, I. Chiesa, M. Degli Esposti, D. Morselli, P. Fabbri, C. De Maria, et al. Carbon nanotubes/regenerated silk composite as a three-dimensional printable bio-adhesive ink with self-powering properties. ACS Appl Mater Interfaces, 13 (18) (2021), pp. 21007-21017.
[100]
D.K. Patel, S.D. Dutta, J. Hexiu, K. Ganguly, K.T. Lim. 3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization. Carbohydr Polym, 281 (2022), 119077.
[101]
L. Huang, X. Du, S. Fan, G. Yang, H. Shao, D. Li, et al. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr Polym, 221 (2019), pp. 146-156.
[102]
T. Huang, C. Fan, M. Zhu, Y. Zhu, W. Zhang, L. Li. 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. Appl Surf Sci, 467-468 (2019), pp. 345-353.
[103]
L. Wei, S. Wu, M. Kuss, X. Jiang, R. Sun, P. Reid, et al. 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering. Bioact Mater, 4 (2019), pp. 256-260.
[104]
J. Wang, A. Goyanes, S. Gaisford, A.W. Basit. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm, 503 (1-2) (2016), pp. 207-212.
[105]
S. Wadnap, S. Krishnamoorthy, Z. Zhang, C. Xu. Biofabrication of 3D cell-encapsulated tubular constructs using dynamic optical projection stereolithography. J Mater Sci: Mater Med, 30 (3) (2019), p. 36.
[106]
F.P. Melchels, J. Feijen, D.W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31 (24) (2010), pp. 6121-6130.
[107]
C.A. Murphy, K.S. Lim, T.B. Woodfield. Next evolution in organ-scale biofabrication: bioresin design for rapid high-resolution vat polymerization. Adv Mater, 34 (20) (2022), p. 2107759.
[108]
S. Suri, L.H. Han, W. Zhang, A. Singh, S. Chen, C.E. Schmidt. Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed Microdevices, 13 (6) (2011), pp. 983-993.
[109]
C. Yu, J. Schimelman, P.R. Wang, K.L. Miller, X.Y. Ma, S.T. You, et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev, 120 (19) (2020), pp. 10695-10743.
[110]
M. Gastaldi, F. Cardano, M. Zanetti, G. Viscardi, C. Barolo, S. Bordiga, et al. Functional dyes in polymeric 3D printing: applications and perspectives. ACS Materials Lett, 3 (1) (2021), pp. 1-17.
[111]
K. Yu, X.J. Zhang, Y. Sun, Q. Gao, J.Z. Fu, X.J. Cai, et al. Printability during projection-based 3D bioprinting. Bioact Mater, 11 (2022), pp. 254-267.
[112]
S. Shin, H. Kwak, J. Hyun. Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly(ethylene glycol)-tetraacrylate bio-ink. ACS Appl Mater Interfaces, 10 (28) (2018), pp. 23573-23582.
[113]
S.H. Kim, Y.K. Yeon, J.M. Lee, J.R. Chao, Y.J. Lee, Y.B. Seo, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun, 9 (1) (2018), p. 2350.
[114]
O. Ajiteru, M.T. Sultan, Y.J. Lee, Y.B. Seo, H. Hong, J.S. Lee, et al. A 3D printable electroconductive biocomposite bioink based on silk fibroin-conjugated graphene oxide. Nano Lett, 20 (9) (2020), pp. 6873-6883.
[115]
O. Ajiteru, K.Y. Choi, T.H. Lim, D.Y. Kim, H. Hong, Y.J. Lee, et al. A digital light processing 3D printed magnetic bioreactor system using silk magnetic bioink. Biofabrication, 13 (3) (2021), p. 034102.
[116]
S. Egawa, H. Kurita, T. Kanno, F. Narita. Effect of silk fibroin concentration on the properties of polyethylene glycol dimethacrylates for digital light processing printing. Adv Eng Mater, 23 (9) (2021), p. 2100487.
[117]
D. Shin, J. Hyun. Silk fibroin microneedles fabricated by digital light processing 3D printing. J Ind Eng Chem, 95 (2021), pp. 126-133.
[118]
M. Xie, L. Lian, X. Mu, Z. Luo, C.E. Garciamendez-Mijares, Z. Zhang, et al. Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat Commun, 14 (1) (2023), p. 210.
[119]
H. Lee, D. Shin, S. Shin, J. Hyun. Effect of gelatin on dimensional stability of silk fibroin hydrogel structures fabricated by digital light processing 3D printing. J Ind Eng Chem, 89 (2020), pp. 119-127.
[120]
K. Na, S. Shin, H. Lee, D. Shin, J. Baek, H. Kwak, et al. Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink. J Ind Eng Chem, 61 (2018), pp. 340-347.
[121]
H. Kwak, S. Shin, H. Lee, J. Hyun. Formation of a keratin layer with silk fibroin-polyethylene glycol composite hydrogel fabricated by digital light processing 3D printing. J Ind Eng Chem, 72 (2019), pp. 232-240.
[122]
H. Hong, Y.B. Seo, D.Y. Kim, J.S. Lee, Y.J. Lee, H. Lee, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 232 (2020), 119679.
[123]
R. Liang, X. Shen, C. Xie, Y. Gu, J. Li, H. Wu, et al. Silk gel recruits specific cell populations for scarless skin regeneration. Appl Mater Today, 23 (2021), 101004.
[124]
S.H. Kim, Y.B. Seo, Y.K. Yeon, Y.J. Lee, H.S. Park, M.T. Sultan, et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials, 260 (2020), 120281.
[125]
X. Mu, J.K. Sahoo, P. Cebe, D.L. Kaplan. Photo-crosslinked silk fibroin for 3D printing. Polymers, 12 (12) (2020), p. 2936.
[126]
H. Kodama. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum, 52 (11) (1981), pp. 1770-1773.
[127]
L.Y. Zhou, J. Fu, Y. He. A review of 3D printing technologies for soft polymer materials. Adv Funct Mater, 30 (28) (2020), p. 2000187.
[128]
J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, et al. Continuous liquid interface production of 3D objects. Science, 347 (6228) (2015), pp. 1349-1352.
[129]
S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt. Polymers for 3D printing and customized additive manufacturing. Chem Rev, 117 (15) (2017), pp. 10212-10290.
[130]
S. Wu, J. Serbin, M. Gu. Two-photon polymerisation for three-dimensional micro-fabrication. J Photochem Photobiol, 181 (1) (2006), pp. 1-11.
[131]
F. Valente, M.S. Hepburn, J. Chen, A.A. Aldana, B.J. Allardyce, S. Shafei, et al. Bioprinting silk fibroin using two-photon lithography enables control over the physico-chemical material properties and cellular response. Bioprinting, 25 (2022), p. e00183.
[132]
M. Pawlicki, H.A. Collins, R.G. Denning, H.L. Anderson. Two-photon absorption and the design of two-photon dyes. Angew Chem Int Edit, 48 (18) (2009), pp. 3244-3266.
[133]
B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 398 (6722) (1999), pp. 51-54.
[134]
Tibbits S, The emergence of “4D printing” [internet]. New York City: Technology, Entertainment, Design (TED) Conference; 2013 Feb [cited 2022 Dec 10]. Available from: https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing
[135]
X. Kuang, D.J. Roach, J. Wu, C.M. Hamel, Z. Ding, T. Wang, et al. Advances in 4D printing: materials and applications. Adv Funct Mater, 29 (2) (2019), p. 1805290.
[136]
M.F. El-Kady, Y. Shao, R.B. Kaner. Graphene for batteries, supercapacitors and beyond. Nat Rev Mater, 1 (7) (2016), p. 16033.
[137]
A. Lendlein, R. Langer. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 296 (5573) (2002), pp. 1673-1676.
[138]
C. De Maria, I. Chiesa, D. Morselli, M.R. Ceccarini, S. Bittolo Bon, M. Degli Esposti, et al. Biomimetic tendrils by four dimensional printing bimorph springs with torsion and contraction properties based on bio-compatible graphene/silk fibroin and poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Adv Funct Mater, 31 (52) (2021), p. 2105665.
[139]
H. Zheng, B. Zuo. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B Mater Biol Med, 9 (5) (2021), pp. 1238-1258.
[140]
X. Huang, M. Zhang, J. Ming, X. Ning, S. Bai. High-strength and high-toughness silk fibroin hydrogels: a strategy using dynamic host-guest interactions. ACS Appl Bio Mater, 3 (10) (2020), pp. 7103-7112.
[141]
H. Liu, Z. Sun, C. Guo. Chemical modification of silk proteins: current status and future prospects. Adv Fiber Mater, 4 (4) (2022), pp. 705-719.
[142]
A.R. Murphy, D.L. Kaplan. Biomedical applications of chemically-modified silk fibroin. J Mater Chem, 19 (36) (2009), pp. 6443-6450.
[143]
D.L. Heichel, K.A. Burke. Dual-mode cross-linking enhances adhesion of silk fibroin hydrogels to intestinal tissue. ACS Biomater Sci Eng, 5 (7) (2019), pp. 3246-3259.
AI Summary AI Mindmap
PDF(6064 KB)

Accesses

Citations

Detail

Sections
Recommended

/