A Deep-Learning and Transfer-Learning Hybrid Aerosol Retrieval Algorithm for FY4-AGRI: Development and Verification over Asia

Disong Fu, Hongrong Shi, Christian A. Gueymard, Dazhi Yang, Yu Zheng, Huizheng Che, Xuehua Fan, Xinlei Han, Lin Gao, Jianchun Bian, Minzheng Duan, Xiangao Xia

Engineering ›› 2024, Vol. 38 ›› Issue (7) : 164-174.

PDF(2488 KB)
PDF(2488 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 164-174. DOI: 10.1016/j.eng.2023.09.023
Research
Article

A Deep-Learning and Transfer-Learning Hybrid Aerosol Retrieval Algorithm for FY4-AGRI: Development and Verification over Asia

Author information +
History +

Abstract

The Advanced Geosynchronous Radiation Imager (AGRI) is a mission-critical instrument for the Fengyun series of satellites. AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands, enabling the detection of highly variable aerosol optical depth (AOD). Quantitative retrieval of AOD has hitherto been challenging, especially over land. In this study, an AOD retrieval algorithm is proposed that combines deep learning and transfer learning. The algorithm uses core concepts from both the Dark Target (DT) and Deep Blue (DB) algorithms to select features for the machine-learning (ML) algorithm, allowing for AOD retrieval at 550 nm over both dark and bright surfaces. The algorithm consists of two steps: ① A baseline deep neural network (DNN) with skip connections is developed using 10 min Advanced Himawari Imager (AHI) AODs as the target variable, and ② sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters. Out-of-station validation shows that the retrieved AOD attains high accuracy, characterized by a coefficient of determination (R2) of 0.70, a mean bias error (MBE) of 0.03, and a percentage of data within the expected error (EE) of 70.7%. A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm, as well as the surface reflectance at 650 nm, are the two largest sources of uncertainty impacting the retrieval. In a case study of monitoring an extreme aerosol event, the AGRI AOD is found to be able to capture the detailed temporal evolution of the event. This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.

Graphical abstract

Keywords

Aerosol optical depth / Retrieval algorithm / Deep learning / Transfer learning / Advanced Geosynchronous Radiation Imager

Cite this article

Download citation ▾
Disong Fu, Hongrong Shi, Christian A. Gueymard, Dazhi Yang, Yu Zheng, Huizheng Che, Xuehua Fan, Xinlei Han, Lin Gao, Jianchun Bian, Minzheng Duan, Xiangao Xia. A Deep-Learning and Transfer-Learning Hybrid Aerosol Retrieval Algorithm for FY4-AGRI: Development and Verification over Asia. Engineering, 2024, 38(7): 164‒174 https://doi.org/10.1016/j.eng.2023.09.023

References

[1]
P. Forster, T. Storelvmo, K. Armour, W. Collins, J.L. Dufresne, D. Frame, et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity.V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger (Eds.), Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (2021), pp. 923-1054
[2]
H. Shi, D. Yang, W. Wang, D. Fu, L. Gao, J. Zhang, et al. First estimation of high-resolution solar photovoltaic resource maps over China with Fengyun-4A satellite and machine learning. Renew Sustain Energy Rev, 184 (2023), Article 113549
[3]
J.H. Seinfeld, C. Bretherton, K.S. Carslaw, H. Coe, P.J. DeMott, E.J. Dunlea, et al. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc Natl Acad Sci USA, 113 (21) (2016), pp. 5781-5790
[4]
A.A. Chudnovsky, P. Koutrakis, I. Kloog, S. Melly, F. Nordio, A. Lyapustin, et al. Fine particulate matter predictions using high resolution aerosol optical depth (AOD) retrievals. Atmos Environ, 89 (2014), pp. 189-198
[5]
H. Che, X. Xia, H. Zhao, L. Li, K. Gui, Y. Zheng, et al. Aerosol optical and radiative properties and their environmental effects in China: a review. Earth-Science Rev, 248 (2024), Article 104634
[6]
E.W. Butt, A. Rap, A. Schmidt, C.E. Scott, K.J. Pringle, C.L. Reddington, et al. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmos Chem Phys, 16 (2) (2016), pp. 873-905
[7]
F.M. Bréon, A. Vermeulen, J. Descloitres. An evaluation of satellite aerosol products against sunphotometer measurements. Remote Sens Environ, 115 (12) (2011), pp. 3102-3111
[8]
G. de Leeuw, T. Holzer-Popp, S. Bevan, W.H. Davies, J. Descloitres, R.G. Grainger, et al. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens Environ, 162 (2015), pp. 295-315
[9]
A. Mhawish, M. Sorek-Hamer, R. Chatfield, T. Banerjee, M. Bilal, M. Kumar, et al. Aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000-2019). Remote Sens Environ, 259 (2021), Article 112410
[10]
X. Xia, H. Che, H. Shi, H. Chen, X. Zhang, P. Wang, et al. Advances in sunphotometer-measured aerosol optical properties and related topics in China: impetus and perspectives. Atmos Res, 249 (2021), Article 105286
[11]
C.A. Gueymard, D. Yang. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmos Environ, 225 (2020), Article 117216
[12]
B.N. Holben, T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, et al. AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 66 (1) (1998), pp. 1-16
[13]
D.M. Giles, A. Sinyuk, M.G. Sorokin, J.S. Schafer, A. Smirnov, I. Slutsker, et al. Advancements in the Aerosol Robotic Network (AERONET) version 3 database—automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos Meas Tech, 12 (1) (2019), pp. 169-209
[14]
T. Nakajima, M. Campanelli, H. Che, V. Estellés, H. Irie, S.W. Kim, et al. An overview of and issues with sky radiometer technology and SKYNET. Atmos Meas Tech, 13 (8) (2020), pp. 4195-4218
[15]
H. Che, X. Xia, H. Zhao, O. Dubovik, B.N. Holben, P. Goloub, et al. Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China aerosol remote sensing network. Atmos Chem Phys, 19 (18) (2019), pp. 11843-11864
[16]
J. Xin, Y.Y. Wang, Y. Pan, D. Ji, Z. Liu, T. Wen, et al. The campaign on atmospheric aerosol research network of China: CARE-China. Bull Am Meteorol Soc, 96 (7) (2015), pp. 1137-1155
[17]
Z.Q. Li, H. Xu, K.T. Li, D.H. Li, Y.S. Xie, L. Li, et al. Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: an overview of Sun-Sky Radiometer Observation Network (SONET) measurements. Bull Am Meteorol Soc, 99 (4) (2018), pp. 739-755
[18]
J. Schmetz, P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, et al. An introduction to Meteosat Second Generation (MSG). Bull Am Meteorol Soc, 83 (7) (2002), pp. 977-992
[19]
K. Bessho, K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J Meteorol Soc Jpn, 94 (2) (2016), pp. 151-183
[20]
H. Choi, S. Park, Y. Kang, J. Im, S. Song. Retrieval of hourly PM2.5 using top-of-atmosphere reflectance from geostationary ocean color imagers I and II. Environ Pollut, 323 (2023), Article 121169
[21]
J. Yang, Z. Zhang, C. Wei, F. Lu, Q. Guo. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Am Meteorol Soc, 98 (8) (2017), pp. 1637-1658
[22]
P. Zhang, L. Zhu, S. Tang, L. Gao, L. Chen, W. Zheng, et al. General comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications. Front Earth Sci, 6 (2019), p. 224
[23]
Y.J. Kaufman, D. Tanré, L.A. Remer, E.F. Vermote, A. Chu, B.N. Holben. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res Atmos, 102 (D14) (1997), pp. 17051-17067
[24]
N.C. Hsu, S.-C. Tsay, M.D. King, J.R. Herman. Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Remote Sens, 42 (3) (2004), pp. 557-569
[25]
N.C. Hsu, M.J. Jeong, C. Bettenhausen, A.M. Sayer, R. Hansell, C.S. Seftor, et al. Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos, 118 (16) (2013), pp. 9296-9315
[26]
N.C.C. Hsu, J. Lee, A.M.M. Sayer, N. Carletta, S.H.H. Chen, C.J.J. Tucker, et al. Retrieving near-global aerosol loading over land and ocean from AVHRR. J Geophys Res Atmos, 122 (18) (2017), pp. 9968-9989
[27]
A. Lyapustin, Y. Wang, I. Laszlo, R. Kahn, S. Korkin, L. Remer, et al. Multiangle implementation of atmospheric correction (MAIAC): 2. aerosol algorithm. J Geophys Res Atmos, 116 (D3) (2011), Article D03211
[28]
Dubovik O, Lapyonok T, Litvinov P, Herman M, Fuertes D, Ducos F, et al. GRASP: a versatile algorithm for characterizing the atmosphere [Internet]. Bellingham: SPIE Newsroom; 2019 Sep 19 [cited 2023 Oct 2]. Available from: https://spie.org/news/5558-grasp-a-versatile-algorithm-for-characterizing-the-atmosphere?SSO=1.
[29]
NOAA NESDIS Center for Satellite Applications and Research STAR. GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for suspended matter/aerosol optical depth and aerosol size parameter. 4th ed. Maryland: NOAA NESDIS Center for Satellite Applications and Research (STAR); 2018.
[30]
M. Yoshida, M. Kikuchi, T.M. Nagao, H. Murakami, T. Nomaki, A. Higurashi. Common retrieval of aerosol properties for imaging satellite sensors. J Meteor Soc Japan, 96B (2018), pp. 193-209
[31]
L. She, H.K. Zhang, Z. Li, G. de Leeuw, B. Huang. Himawari-8 aerosol optical depth (AOD) retrieval using a deep neural network trained using AERONET observations. Remote Sens, 12 (24) (2020), p. 4125
[32]
J.M.M. Yeom, S. Jeong, J.S.S. Ha, K.H.H. Lee, C.S.S. Lee, S. Park. Estimation of the hourly aerosol optical depth from GOCI geostationary satellite data: deep neural network, machine learning, and physical models. IEEE Trans Geosci Remote Sens, 60 (2022), pp. 1-12
[33]
Y. Kang, M. Kim, E. Kang, D. Cho, J. Im. Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia. ISPRS J Photogramm Remote Sens, 183 (2022), pp. 253-268
[34]
X. Chen, G. De Leeuw, A. Arola, S. Liu, Y. Liu, Z. Li, et al. Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: artificial neural network method. Remote Sens Environ, 249 (2020), Article 112006
[35]
X. Jiang, Y. Xue, C. Jin, R. Bai, Y. Sun, S. Wu. A simple Band Ratio Library (BRL) algorithm for retrieval of hourly aerosol optical depth using FY-4A AGRI geostationary satellite data. Remote Sens, 14 (19) (2022), p. 4861
[36]
Y. Xie, Z. Li, J. Guang, W. Hou, A. Salam, Z. Ali, et al. Aerosol optical depth retrieval over South Asia using FY-4A/AGRI data. IEEE Trans Geosci Remote Sens, 60 (2022), pp. 1-14
[37]
H. Ding, L. Zhao, S. Liu, X. Chen, G. de Leeuw, F. Wang, et al. FY-4A/AGRI aerosol optical depth retrieval capability test and validation based on NNAeroG. Remote Sens, 14 (21) (2022), p. 5591
[38]
M. Min, C. Wu, C. Li, H. Liu, N. Xu, X. Wu, et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J Meteorol Res, 31 (4) (2017), pp. 708-719
[39]
C. Cox, W. Munk. Measurement of the roughness of the sea surface from photographs of the Sun’s glitter. J Opt Soc Am, 44 (11) (1954), pp. 838-850
[40]
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, et al. The ERA 5 global reanalysis. Q J Roy Meteor Soc, 146 (730) (2020), pp. 1999-2049
[41]
D. Fu, C.A. Gueymard, D. Yang, Y. Zheng, X. Xia, J. Bian. Improving aerosol optical depth retrievals from Himawari-8 with ensemble learning enhancement: validation over Asia. Atmos Res, 284 (2023), Article 106624
[42]
D. Sulla-Menashe, M.A. Friedl. User guide to collection 6 MODIS Land Cover Dynamics (MCD12Q2) product. Missoula: NASA EOSDIS L. Processes DAAC (2018), pp. 1-8
[43]
M. Bilal, J.E. Nichol, M.P. Bleiweiss, D. Dubois. A simplified high resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces. Remote Sens Environ, 136 (2013), pp. 135-145
[44]
X. Su, L. Wang, M. Zhang, W. Qin, M. Bilal. A High-precision aerosol retrieval algorithm (HiPARA) for Advanced Himawari Imager (AHI) data: development and verification. Remote Sens Environ, 253 (2021), Article 112221
[45]
Y. Chen, M. Fan, M. Li, Z. Li, J. Tao, Z. Wang, et al. Himawari-8/AHI aerosol optical depth detection based on machine learning algorithm. Remote Sens, 14 (13) (2022), p. 2967
[46]
Y. Hu, L. Liu, L. Liu, D. Peng, Q. Jiao, H. Zhang. A landsat-5 atmospheric correction based on MODIS atmosphere products and 6s model. IEEE J Sel Top Appl Earth Obs Remote Sens, 7 (5) (2014), pp. 1609-1615
[47]
Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521 (7553) (2015), pp. 436-444
[48]
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016); 2016 Jun 27-30; Las Vegas, NV, USA. New York City: Institute of Electrical and Electronics Engineers (IEEE); 2016. p. 770-8.
[49]
W. Weng, X. Zhu. U-Net: convolutional networks for biomedical image segmentation. IEEE Access, 9 (2021), pp. 16591-16603
[50]
Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance of skip connections in biomedical image segmentation. In:Proceedings of the International Workshop on Deep Learning in Medical Image Analysis (DLMIA 2016); 2016 Oct 21; Athens, Greece. Berlin:Springer; 2016. p. 179-87.
[51]
Kingma DP, Ba JL. Adam: a method for stochastic optimization. arXiv 2014; 1412:6980.
[52]
Ren J, Zhang M, Yu C, Liu Z. Balanced MSE for imbalanced visual regression. In: Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022); 2022 Jun 21-24; New Orleans, LA, USA. New York City: Institute of Electrical and Electronics Engineers (IEEE); 2022. p. 7916-25.
[53]
M. Steininger, K. Kobs, P. Davidson, A. Krause, A. Hotho. Density-based weighting for imbalanced regression. Mach Learn, 110 (8) (2021), pp. 2187-2211
[54]
Y. Tan, Q. Wang, Z. Zhang. Assessing spatiotemporal variations of AOD in Japan based on Himawari-8 L3 V31 aerosol products: validations and applications. Atmos Pollut Res, 13 (6) (2022), Article 101439
[55]
L. Feng, X. Su, L. Wang, T. Jiang, M. Zhang, J. Wu, et al. Accuracy and error cause analysis, and recommendations for usage of Himawari-8 aerosol products over Asia and Oceania. Sci Total Environ, 796 (2021), Article 148958
[56]
J. Yosinski, J. Clune, Y. Bengio, H. Lipson. How transferable are features in deep neural networks?. Adv Neural Inf Process Syst, 4 (2014), pp. 3320-3328
[57]
Z. Liu, Q. Yang, J. Shao, G. Wang, H. Liu, X. Tang, et al. Improving daily precipitation estimation in the data scarce area by merging rain gauge and TRMM data with a transfer learning framework. J Hydrol, 613 (2022), Article 128455
[58]
A.M. Sayer, L.A. Munchak, N.C. Hsu, R.C. Levy, C. Bettenhausen, M.J. Jeong. MODIS collection 6 aerosol products: comparison between Aqua’s e-deep blue, dark target, and “merged” data sets, and usage recommendations. J Geophys Res Atmos, 119 (24) (2014), pp. 13965-13989
[59]
R.C. Levy, S. Mattoo, L.A. Munchak, L.A. Remer, A.M. Sayer, F. Patadia, et al. The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech, 6 (11) (2013), pp. 2989-3034
[60]
Jiang X, Xue Y, Jin C, Bai R, Li N, Sun Y. Retrieval of aerosol optical depth over land using Fy-4Aagri geostationary satellite data. In: Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS-2021; 2021 Jul 11-16; Brussels, Belgium. New York City: Institute of Electrical and Electronics Engineers (IEEE); 2021. p. 1931-4.
[61]
Z. Song, D. Fu, X. Zhang, Y. Wu, X. Xia, J. He, et al. Diurnal and seasonal variability of PM2.5 and AOD in North China Plain: comparison of MERRA-2 products and ground measurements. Atmos Environ, 191 (2018), pp. 70-78
[62]
P. Wang, Q. Tang, Y. Zhu, K. Zheng, T. Liang, Q. Yu, et al. Validation and analysis of MAIAC AOD aerosol products in East Asia from 2011 to 2020. Remote Sens, 14 (22) (2022), p. 5735
[63]
A. Mhawish, T. Banerjee, M. Sorek-Hamer, A. Lyapustin, D.M. Broday, R. Chatfield. Comparison and evaluation of MODIS multi-angle implementation of atmospheric correction (MAIAC) aerosol product over South Asia. Remote Sens Environ, 224 (2019), pp. 12-28
[64]
W. Qin, H. Fang, L. Wang, J. Wei, M. Zhang, X. Su, et al. MODIS high-resolution MAIAC aerosol product: global validation and analysis. Atmos Environ, 264 (2021), Article 118684
[65]
Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS 2017); 2017 Dec 4-9; Long Beach, CA, USA. New York City: the Association for Computing Machinery; 2017. p.4768-77.
[66]
B. Chen, Z. Liu. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalysis, radiosonde, GPS, and microwave satellite. J Geophys Res Atmos, 121 (19) (2016), p. 238
[67]
S. Wang, T. Xu, W. Nie, C. Jiang, Y. Yang, Z. Fang, et al. Evaluation of precipitable water vapor from five reanalysis products with ground-based GNSS observations. Remote Sens, 12 (11) (2020), p. 1817
[68]
M. Ibrahim, A. Al-Mashaqbah, B. Koch, P. Datta. An evaluation of available digital elevation models (DEMs) for geomorphological feature analysis. Environ Earth Sci, 79 (13) (2020), p. 336
AI Summary AI Mindmap
PDF(2488 KB)

Accesses

Citations

Detail

Sections
Recommended

/