
Facilitated Prediction of Micropollutant Degradation via UV-AOPs in Various Waters by Combining Model Simulation and Portable Measurement
Yanyan Huang, Mengkai Li, Zhe Sun, Wentao Li, James R. Bolton, Zhimin Qiang
Engineering ›› 2024, Vol. 37 ›› Issue (6) : 97-105.
Facilitated Prediction of Micropollutant Degradation via UV-AOPs in Various Waters by Combining Model Simulation and Portable Measurement
• Water matrix scavenging capacities for $ \mathrm{HO}^{·}$, $ \mathrm{SO}_{4}^{·-}$ and $ \mathrm{Cl}^{·}$ were measured portably.
• Model simulation consisted of photochemical, QSAR, and SSA models.
• k′p,MP values in UV-AOPs were predicted in real waters and verified experimentally.
• The developed method facilitates the selection and optimization of UV-AOPs.
The degradation of micropollutants in water via ultraviolet (UV)-based advanced oxidation processes (AOPs) is strongly dependent on the water matrix. Various reactive radicals (RRs) formed in UV-AOPs have different reaction selectivities toward water matrices and degradation efficiencies for target micropollutants. Hence, process selection and optimization are crucial. This study developed a facilitated prediction method for the photon fluence-based rate constant for micropollutant degradation (k′p,MP) in various UV-AOPs by combining model simulation with portable measurement. Portable methods for measuring the scavenging capacities of the principal RRs (RRSCs) involved in UV-AOPs (i.e., $ \mathrm{HO}^{·}$, $ \mathrm{SO}_{4}^{·-}$, and $ \mathrm{Cl}^{·}$) using a mini-fluidic photoreaction system were proposed. The simulation models consisted of photochemical, quantitative structure–activity relationship, and radical concentration steady-state approximation models. The RRSCs were determined in eight test waters, and a higher RRSC was found to be associated with a more complex water matrix. Then, by taking sulfamethazine, caffeine, and carbamazepine as model micropollutants, the k′p,MP values in various UV-AOPs were predicted and further verified experimentally. A lower k′p,MP was found to be associated with a higher RRSC for a stronger RR competition; for example, k′p,MP values of 130.9 and 332.5 m2·einstein–1, respectively, were obtained for carbamazepine degradation by UV/H2O2 in the raw water (RRSC = 9.47 × 104 s−1) and sand-filtered effluent (RRSC = 2.87 × 104 s−1) of a drinking water treatment plant. The developed method facilitates process selection and optimization for UV-AOPs, which is essential for increasing the efficiency and cost-effectiveness of water treatment.
UV-AOPs / Micropollutant degradation / Reactive radicals / Water matrix / Model simulation
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
National Institute of Standards and Technology (NIST). NDRL/NIST Solution Kinetcis Database on the [Internet]. c 2023 [cited 2023 Mar 30]. Available online: https://kinetics.nist.gov/solution/.
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
/
〈 |
|
〉 |