
Dynamics of Land Use/Land Cover Considering Ecosystem Services for a Dense-Population Watershed Based on a Hybrid Dual-Subject Agent and Cellular Automaton Modeling Approach
Yutong Li, Yanpeng Cai, Qiang Fu, Xiaodong Zhang, Hang Wan, Zhifeng Yang
Engineering ›› 2024, Vol. 37 ›› Issue (6) : 198-211.
Dynamics of Land Use/Land Cover Considering Ecosystem Services for a Dense-Population Watershed Based on a Hybrid Dual-Subject Agent and Cellular Automaton Modeling Approach
Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions, leading to potential conflicts among natural and human-related issues as well as among stakeholders. This study introduced economic standards for farmers. A hybrid approach (CA-ABM) of cellular automaton (CA) and an agent-based model (ABM) was developed to effectively deal with social and land-use synergic issues to examine human-environment interactions and projections of land-use conversions for a humid basin in south China. Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change. The major modules of the CA-ABM are initialization, migration, assets, land suitability, and land-use change decisions. Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression (SLR) model. Simultaneously, multicriteria evaluation (MCE) and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion. An agent-based CA-SLR-MCE-Markov (ABCSMM) land-use conversion model was proposed to explore the impacts of policies on land-use conversion. This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services. The results demonstrated land-use simulations under multi-policy scenarios, revealing the usefulness of the model for normative research on land-use management.
Land use/land cover / Human-environment interactions / Agent-based model / Cellular automaton
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
/
〈 |
|
〉 |