Machine-Learning-Assisted Design of Deep Eutectic Solvents Based on Uncovered Hydrogen Bond Patterns

Usman L. Abbas, Yuxuan Zhang, Joseph Tapia, Selim Md, Jin Chen, Jian Shi, Qing Shao

Engineering ›› 2024, Vol. 39 ›› Issue (8) : 74-83.

PDF(1741 KB)
PDF(1741 KB)
Engineering ›› 2024, Vol. 39 ›› Issue (8) : 74-83. DOI: 10.1016/j.eng.2023.10.020
Research
Article

Machine-Learning-Assisted Design of Deep Eutectic Solvents Based on Uncovered Hydrogen Bond Patterns

Author information +
History +

Abstract

Non-ionic deep eutectic solvents (DESs) are non-ionic designer solvents with various applications in catalysis, extraction, carbon capture, and pharmaceuticals. However, discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation. The search for DES relies heavily on intuition or trial-and-error processes, leading to low success rates or missed opportunities. Recognizing that hydrogen bonds (HBs) play a central role in DES formation, we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning (ML) models to discover new DES systems. We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics (MD) simulation trajectories. The analysis reveals that DES systems have two unique features compared to non-DES systems: The DESs have ① more imbalance between the numbers of the two intra-component HBs and ② more and stronger inter-component HBs. Based on these results, we develop 30 ML models using ten algorithms and three types of HB-based descriptors. The model performance is first benchmarked using the average and minimal receiver operating characteristic (ROC)-area under the curve (AUC) values. We also analyze the importance of individual features in the models, and the results are consistent with the simulation-based statistical analysis. Finally, we validate the models using the experimental data of 34 systems. The extra trees forest model outperforms the other models in the validation, with an ROC-AUC of 0.88. Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.

Graphical abstract

Keywords

Machine learning / Deep eutectic solvents / Molecular dynamics simulations / Hydrogen bond / Molecular design

Cite this article

Download citation ▾
Usman L. Abbas, Yuxuan Zhang, Joseph Tapia, Selim Md, Jin Chen, Jian Shi, Qing Shao. Machine-Learning-Assisted Design of Deep Eutectic Solvents Based on Uncovered Hydrogen Bond Patterns. Engineering, 2024, 39(8): 74‒83 https://doi.org/10.1016/j.eng.2023.10.020

References

[1]
D.O. Abranches, L.P. Silva, M.A.R. Martins, S.P. Pinho, J.A.P. Coutinho. Understanding the formation of deep eutectic solvents: betaine as a universal hydrogen bond acceptor. ChemSusChem, 13 (18) (2020), pp. 4916-4921.
[2]
N.M. Stephens, E.A. Smith. Structure of deep eutectic solvents (DESs): what we know, what we want to know, and why we need to know it. Langmuir, 38 (46) (2022), pp. 14017-14024.
[3]
A.T. Celebi, N. Dawass, O.A. Moultos, T.J.H. Vlugt. How sensitive are physical properties of choline chloride-urea mixtures to composition changes: molecular dynamics simulations and Kirkwood-Buff theory. J Chem Phys, 154 (18) (2021), Article 184502.
[4]
D.O. Abranches, J.A.P. Coutinho. Type V deep eutectic solvents: design and applications. Curr Opin Green Sustain Chem, 35 (2022), Article 100612.
[5]
R. Alcalde, A. Gutiérrez, M. Atilhan, S. Aparicio. An experimental and theoretical investigation of the physicochemical properties on choline chloride—lactic acid based natural deep eutectic solvent (NADES). J Mol Liq, 290 (2019), Article 110916.
[6]
C.H.J.T. Dietz, A. Erve, M.C. Kroon, A.M. van Sint, F. Gallucci, C. Held. Thermodynamic properties of hydrophobic deep eutectic solvents and solubility of water and HMF in them: measurements and PC-SAFT modeling. Fluid Phase Equilib, 489 (2019), pp. 75-82.
[7]
C. Florindo, L.C. Branco, I.M. Marrucho. Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilib, 448 (2017), pp. 135-142.
[8]
H. Kivelä, M. Salomäki, P. Vainikka, E. Mäkilä, F. Poletti, S. Ruggeri, et al. Effect of water on a hydrophobic deep eutectic solvent. J Phys Chem B, 126 (2) (2022), pp. 513-527.
[9]
A. Kovács, E.C. Neyts, I. Cornet, M. Wijnants, P. Billen. Modeling the physicochemical properties of natural deep eutectic solvents. ChemSusChem, 13 (15) (2020), pp. 3789-3804.
[10]
T. Křížek, M. Bursová, R. Horsley, M. Kuchař, P. Tůma, R. Čabala, et al. Menthol-based hydrophobic deep eutectic solvents: towards greener and efficient extraction of phytocannabinoids. J Clean Prod, 193 (2018), pp. 391-396.
[11]
K. Li, Y. Jin, D. Jung, K. Park, H. Kim, J. Lee. In situ formation of thymol-based hydrophobic deep eutectic solvents: application to antibiotics analysis in surface water based on liquid-liquid microextraction followed by liquid chromatography. J Chromatogr A, 1614 (2020), Article 460730.
[12]
M. Lukaczynska-Anderson, M.H. Mamme, A. Ceglia, K. Van den Bergh, J. De Strycker, F. De Proft, et al. The role of hydrogen bond donor and water content on the electrochemical reduction of Ni2+ from solvents—an experimental and modelling study. Phys Chem Chem Phys, 22 (28) (2020), pp. 16125-16135.
[13]
M.A.R. Martins, L.P. Silva, N. Schaeffer, D.O. Abranches, G.J. Maximo, S.P. Pinho, et al. Greener terpene-terpene eutectic mixtures as hydrophobic solvents. ACS Sustain Chem Eng, 7 (20) (2019), pp. 17414-17423.
[14]
D. Tolmachev, N. Lukasheva, R. Ramazanov, V. Nazarychev, N. Borzdun, I. Volgin, et al. Computer simulations of deep eutectic solvents: challenges, solutions, and perspectives. Int J Mol Sci, 23 (2) (2022), p. 645.
[15]
B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, et al. Deep eutectic solvents: a review of fundamentals and applications. Chem Rev, 121 (3) (2021), pp. 1232-1285.
[16]
L. Zamora, C. Benito, A. Gutiérrez, R. Alcalde, N. Alomari, A.A. Bodour, et al. Nanostructuring and macroscopic behavior of type V deep eutectic solvents based on monoterpenoids. Phys Chem Chem Phys, 24 (1) (2021), pp. 512-531.
[17]
F. Bergua, M. Castro, C. Lafuente, M. Artal. Thymol + L-menthol eutectic mixtures: thermophysical properties and possible applications as decontaminants. J Mol Liq, 368 (Pt B) ( 2022), Article 120789.
[18]
F. Bergua, M. Castro, J. Muñoz-Embid, C. Lafuente, M. Artal. L-Menthol-based eutectic solvents: characterization and application in the removal of drugs from water. J Mol Liq, 352 (2022), Article 118754.
[19]
M. Abdollahzadeh, M. Khosravi, B. Hajipour Khire Masjidi, A. Samimi Behbahan, A. Bagherzadeh, A. Shahkar, et al. Estimating the density of deep eutectic solvents applying supervised machine learning techniques. Sci Rep, 12 (1) (2022), p. 4954.
[20]
Y. Dai, G.J. Witkamp, R. Verpoorte, Y.H. Choi. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem, 187 (2015), pp. 14-19.
[21]
A. Gutiérrez, S. Aparicio, M. Atilhan. Design of arginine-based therapeutic deep eutectic solvents as drug solubilization vehicles for active pharmaceutical ingredients. Phys Chem Chem Phys, 21 (20) (2019), pp. 10621-10634.
[22]
A. Gutiérrez, M. Atilhan, S. Aparicio. A theoretical study on lidocaine solubility in deep eutectic solvents. Phys Chem Chem Phys, 20 (43) (2018), pp. 27464-27473.
[23]
M.H. Zainal-Abidin, M. Hayyan, G.C. Ngoh, W.F. Wong, C.Y. Looi. Emerging frontiers of deep eutectic solvents in drug discovery and drug delivery systems. J Control Release, 316 (2019), pp. 168-195.
[24]
X. Zhong, C. Velez, O. Acevedo. Partial charges optimized by genetic algorithms for deep eutectic solvent simulations. J Chem Theory Comput, 17 (5) (2021), pp. 3078-3087.
[25]
N. Chaabene, K. Ngo, M. Turmine, V. Vivier. New hydrophobic deep eutectic solvent for electrochemical applications. J Mol Liq, 319 (2020), Article 114198.
[26]
T. Hanada, M. Goto. Synergistic deep eutectic solvents for lithium extraction. ACS Sustain Chem Eng, 9 (5) (2021), pp. 2152-2160.
[27]
L. Yurramendi, J. Hidalgo, A. Siriwardana. A sustainable process for the recovery of valuable metals from spent lithium ion batteries by deep eutectic solvents leaching. Mater Proc, 5 (1) (2021), p. 100.
[28]
K. Du, E.H. Ang, X. Wu, Y. Liu. Progresses in sustainable recycling technology of spent lithium-ion batteries. Energy Environ Mater, 5 (4) (2022), pp. 1012-1036.
[29]
J. Neumann, M. Petranikova, M. Meeus, J.D. Gamarra, R. Younesi, M. Winter, et al. Recycling of lithium-ion batteries—current state of the art, circular economy, and next generation recycling. Adv Energy Mater, 12 (17) (2022), Article 2102917.
[30]
S. Tang, M. Zhang, M. Guo. A novel deep-eutectic solvent with strong coordination ability and low viscosity for efficient extraction of valuable metals from spent lithium-ion batteries. ACS Sustain Chem Eng, 10 (2) (2022), pp. 975-985.
[31]
J. Zhang, M. Wenzel, J. Steup, G. Schaper, F. Hennersdorf, H. Du, et al. 4-Phosphoryl pyrazolones for highly selective lithium separation from alkali metal ions. Chemistry, 28 (1) (2022), Article e202103640.
[32]
Y. Chen, Y. Wang, Y. Bai, Y. Duan, B. Zhang, C. Liu, et al. Significant improvement in dissolving lithium-ion battery cathodes using novel deep eutectic solvents at low temperature. ACS Sustain Chem Eng, 9 (38) (2021), pp. 12940-12948.
[33]
K. Wang, T. Hu, P. Shi, Y. Min, J. Wu, Q. Xu. Efficient recovery of value metals from spent lithium-ion batteries by combining deep eutectic solvents and coextraction. ACS Sustain Chem Eng, 10 (3) (2022), pp. 1149-1159.
[34]
G. Zante, M. Boltoeva. Review on hydrometallurgical recovery of metals with deep eutectic solvents. Sustain Chem, 1 (3) (2020), pp. 238-255.
[35]
L. Chen, Y. Chao, X. Li, G. Zhou, Q. Lu, M. Hua, et al. Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chem, 23 (5) (2021), pp. 2177-2184.
[36]
M.K. Tran, M.T.F. Rodrigues, K. Kato, G. Babu, P.M. Ajayan. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat Energy, 4 (4) (2019), pp. 339-345.
[37]
S. Wang, Z. Zhang, Z. Lu, Z. Xu. A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries. Green Chem, 22 (14) (2020), pp. 4473-4482.
[38]
N. Aguilar, R. Barros, J. Antonio Tamayo-Ramos, S. Martel, A. Bol, M. Atilhan, et al. Carbon nanomaterials with thymol + menthol type V natural deep eutectic solvent: from surface properties to nano-Venturi effect through nanopores. J Mol Liq, 368 (2022), Article 120637.
[39]
M. Tiecco, F. Cappellini, F. Nicoletti, T. Del Giacco, R. Germani, P. Di Profio. Role of the hydrogen bond donor component for a proper development of novel hydrophobic deep eutectic solvents. J Mol Liq, 281 (2019), pp. 423-430.
[40]
M.H. Zainal-Abidin, M. Hayyan, W.F. Wong. Hydrophobic deep eutectic solvents: current progress and future directions. J Ind Eng Chem, 97 (2021), pp. 142-162.
[41]
R. Paul, A. Mitra, S. Paul. Phase separation property of a hydrophobic deep eutectic solvent-water binary mixture: a molecular dynamics simulation study. J Chem Phys, 154 (24) (2021), Article 244504.
[42]
P. Makoś, E. Słupek, J. Gębicki. Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents—experimental and theoretical studies. J Mol Liq, 308 (2020), Article 113101.
[43]
F.O. Farias, J.F.B. Pereira, J.A.P. Coutinho, L. Igarashi-Mafra, M.R. Mafra. Understanding the role of the hydrogen bond donor of the deep eutectic solvents in the formation of the aqueous biphasic systems. Fluid Phase Equilib, 503 (2020), Article 112319.
[44]
P. Vainikka, S. Thallmair, P.C.T. Souza, S.J. Marrink. Martini 3 coarse-grained model for type III deep eutectic solvents: thermodynamic, structural, and extraction properties. ACS Sustain Chem Eng, 9 (51) (2021), pp. 17338-17350.
[45]
M. Atilhan, S. Aparicio. Molecular dynamics simulations of mixed deep eutectic solvents and their interaction with nanomaterials. J Mol Liq, 283 (2019), pp. 147-154.
[46]
I.I.I. Alkhatib, D. Bahamon, F. Llovell, M.R.M. Abu-Zahra, L.F. Vega. Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. J Mol Liq, 298 (2020), Article 112183.
[47]
I. Adeyemi, M.R.M. Abu-Zahra, I.M. AlNashef. Physicochemical properties of alkanolamine-choline chloride deep eutectic solvents: measurements, group contribution and artificial intelligence prediction techniques. J Mol Liq, 256 (2018), pp. 581-590.
[48]
K. Shahbaz, F.S.G. Bagh, F.S. Mjalli, I.M. AlNashef, M.A. Hashim. Prediction of refractive index and density of deep eutectic solvents using atomic contributions. Fluid Phase Equilib, 354 (2013), pp. 304-311.
[49]
F.S.G. Bagh, K. Shahbaz, F.S. Mjalli, I.M. AlNashef, M.A. Hashim. Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: measurements and artificial intelligence-based prediction. Fluid Phase Equilib, 356 (2013), pp. 30-37.
[50]
X. Xu, J. Range, G. Gygli, J. Pleiss. Analysis of thermophysical properties of deep eutectic solvents by data integration. J Chem Eng Data, 65 (3) (2020), pp. 1172-1179.
[51]
A.K. Halder, R. Haghbakhsh, I.V. Voroshylova, A.R.C. Duarte, M.N.D.S. Cordeiro. Density of deep eutectic solvents: the path forward cheminformatics-driven reliable predictions for mixtures. Molecules, 26 (19) (2021), p. 5779.
[52]
U.L. Abbas, Q. Qiao, M.T. Nguyen, J. Shi, Q. Shao. Molecular dynamics simulations of heterogeneous hydrogen bond environment in hydrophobic deep eutectic solvents. AIChE J, 68 (2022), Article e17382.
[53]
D.J.G.P. van Osch, C.H.J.T. Dietz, S.E.E. Warrag, M.C. Kroon. The curious case of hydrophobic deep eutectic solvents: a story on the discovery, design, and applications. ACS Sustain Chem Eng, 8 (29) (2020), pp. 10591-10612.
[54]
D.J.G.P. van Osch, C.H.J.T. Dietz, J. van Spronsen, M.C. Kroon, F. Gallucci, A.M. van Sint, et al. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustain Chem Eng, 7 (3) (2019), pp. 2933-2942.
[55]
M.J. Robertson, J. Tirado-Rives, W.L. Jorgensen. Improved peptide and protein torsional energetics with the OPLS-AA force field. J Chem Theory Comput, 11 (7) (2015), pp. 3499-3509.
[56]
L.S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives, W.L. Jorgensen. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res, 45 (W1) (2017), pp. W331-W336.
[57]
W. Humphrey, A. Dalke, K. Schulten. VMD: visual molecular dynamics. J Mol Graph, 14 (1) (1996), pp. 33-38.
[58]
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak. Molecular dynamics with coupling to an external bath. J Chem Phys, 81 (8) (1984), pp. 3684-3690.
[59]
G. Bussi, D. Donadio, M. Parrinello. Canonical sampling through velocity rescaling. J Chem Phys, 126 (1) (2007), Article 014101.
[60]
T. Darden, D. York, L. Pedersen. Particle mesh Ewald: an N∙log(N) method for Ewald sums in large systems. J Chem Phys, 98 (12) (1993), pp. 10089-10092.
[61]
B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije. LINCS: a linear constraint solver for molecular simulations. J Comput Chem, 18 (12) (1997), pp. 1463-1472.
[62]
M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2 ( 2015), pp. 19-25.
[63]
A. Luzar, D. Chandler. Hydrogen-bond kinetics in liquid water. Nature, 379 (6560) (1996), pp. 55-57.
[64]
A. Luzar. Resolving the hydrogen bond dynamics conundrum. J Chem Phys, 113 (23) (2000), pp. 10663-10675.
[65]
Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learning software:experiences from the scikit-learn project [presentation]. In: EuropeanConference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases; 2013 Sep 23-27 ; Prague, Czech Republic; 2013.
[66]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al. Scikit-learn: machine learning in Python. J Mach Learn Res, 12 (2011), pp. 2825-2830.
[67]
Chen T, Guestrin C. XGBoost:a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13-17; San Francisco, CA, USA. New York City: Association for Computing Machinery; 2016. p. 785-94.
[68]
McKinney W. Data structures for statistical computing in Python. In: vander Walt S, MillmanJ, editors. Proceedings of the 9th Python in Science Conference; Jun 28-Jul 3; Austin, TX USA; 2010. p. 2010 56-61.
[69]
C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, et al. Array programming with NumPy. Nature, 585 (7825) (2020), pp. 357-362.
[70]
J.D. Hunter. Matplotlib: a 2D graphics environment. Comput Sci Eng, 9 (3) (2007), pp. 90-95.
[71]
P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods, 17 (3) (2020), pp. 261-272.
[72]
Y. Zhang, Q. Qiao, U.L. Abbas, J. Liu, Y. Zheng, C. Jones, et al. Lignin derived hydrophobic deep eutectic solvents as sustainable extractants. J Clean Prod, 388 (2023), Article 135808.
AI Summary AI Mindmap
PDF(1741 KB)

Accesses

Citations

Detail

Sections
Recommended

/