Machine Perfusion Plus for Extended Criteria Donor Liver Grafts: Making Every Liver Count

Zhoucheng Wang, Jack Martin, Jiongjie Yu, Kai Wang, Kourosh Saeb-Parsy, Xiao Xu

Engineering ›› 2024, Vol. 32 ›› Issue (1) : 29-40.

PDF(1605 KB)
PDF(1605 KB)
Engineering ›› 2024, Vol. 32 ›› Issue (1) : 29-40. DOI: 10.1016/j.eng.2023.11.003
Research
Review

Machine Perfusion Plus for Extended Criteria Donor Liver Grafts: Making Every Liver Count

Author information +
History +

Abstract

Transplantation represents the most effective treatment for end-stage liver diseases but is limited by the shortage of healthy donor organs. Extended criteria donor (ECD) liver grafts are increasingly utilized in clinical practice to mitigate this challenge. However, impaired ischemic tolerance of these grafts jeopardizes organ viability during cold storage. Machine perfusion (MP) was designed to improve organ preservation and reduce posttransplant complications. Nevertheless, it is increasingly evident that MP alone may not preserve ECD grafts optimally. Increasing emphasis has thus been placed on modified MP strategies, including the use of different perfusates, modified perfusion modalities, and different therapeutic interventions. Here, we introduce a novel term, “MP Plus,” denoting these additional strategies that are designed to restore organ function and potentially enable regeneration of ECD grafts. In this review, we summarize the existing and potential modified MP strategies and discuss their advantages in reconditioning different ECD grafts in clinical settings.

Graphical abstract

Keywords

Liver transplantation / Extended criteria donor / Machine perfusion plus / Organ shortage

Cite this article

Download citation ▾
Zhoucheng Wang, Jack Martin, Jiongjie Yu, Kai Wang, Kourosh Saeb-Parsy, Xiao Xu. Machine Perfusion Plus for Extended Criteria Donor Liver Grafts: Making Every Liver Count. Engineering, 2024, 32(1): 29‒40 https://doi.org/10.1016/j.eng.2023.11.003

References

[1]
A.S. Bodzin, T.B. Baker. Liver transplantation today: where we are now and where we are going. Liver Transpl, 24 (10) ( 2018), pp. 1470-2145
[2]
A.J. Kwong, N.H. Ebel, W.R. Kim, J.R. Lake, J.M. Smith, D.P. Schladt, et al.. OPTN/SRTR 2020 annual data report: liver. Am J Transplant, 22 (Suppl 2) ( 2022), pp. 204-309
[3]
P. Dutkowski, O. de Rougemont, P.A. Clavien. Machine perfusion for ‘marginal’ liver grafts. Am J Transplant, 8 (5) ( 2008), pp. 917-924
[4]
B. Mullhaupt, D. Dimitroulis, J.T. Gerlach, P.A. Clavien. Hot topics in liver transplantation: organ allocation-extended criteria donor-living donor liver transplantation. J Hepatol, 48 (Suppl 1) ( 2008), pp. S58-S67
[5]
Goldaracena N, Cullen JM, Kim DS, Ekser B, Halazun KJ. Expanding the donor pool for liver transplantation with marginal donors. Int J Surg 2020;82s:30-5.
[6]
R.X. Sousa Da Silva, A. Weber,P. Dutkowski, P.A. Clavien
Machine perfusion in liver transplantation. Hepatology, 76 (5) ( 2022), pp. 1531-1549
[7]
C.D.L. Ceresa, D. Nasralla, J.M. Pollok, P.J. Friend. Machine perfusion of the liver: applications in transplantation and beyond. Nat Rev Gastroenterol Hepatol, 19 (3) ( 2022), pp. 199-209
[8]
F. Durand, J.F. Renz, B. Alkofer, P. Burra, P.A. Clavien, R.J. Porte, et al.. Report of the Paris consensus meeting on expanded criteria donors in liver transplantation. Liver Transpl, 14 (12) ( 2008), pp. 1694-1707
[9]
F. Durand, J. Levitsky, F. Cauchy, H. Gilgenkrantz, O. Soubrane, C. Francoz. Age and liver transplantation. J Hepatol, 70 (4) ( 2019), pp. 745-758
[10]
C. Jiménez-Romero, M. Clemares-Lama, A. Manrique-Municio, A. García-Sesma, J. Calvo-Pulido, E. Moreno-González.Long-term results using old liver grafts for transplantation: sexagenerian versus liver donors older than 70 years. World J Surg, 37 (9) ( 2013), pp. 2211-2221
[11]
H. Yersiz, C. Lee, F.M. Kaldas, J.C. Hong, A. Rana, G.T. Schnickel, et al.. Assessment of hepatic steatosis by transplant surgeon and expert pathologist: a prospective, double-blind evaluation of 201 donor livers. Liver Transpl, 19 (4) ( 2013), pp. 437-449
[12]
A.L. Spitzer, O.B. Lao, A.A. Dick, R. Bakthavatsalam, J.B. Halldorson, M.M. Yeh, et al.. The biopsied donor liver: incorporating macrosteatosis into high-risk donor assessment. Liver Transpl, 16 (7) ( 2010), pp. 874-884
[13]
J. Fan, C.J. Chen, Y.C. Wang, W. Quan, J.W. Wang, W.G. Zhang. Hemodynamic changes in hepatic sinusoids of hepatic steatosis mice. World J Gastroenterol, 25 (11) ( 2019), pp. 1355-1365
[14]
M. Lomero, D. Gardiner, E. Coll, B. Haase-Kromwijk, F. Procaccio, F. Immer, et al.. Donation after circulatory death today: an updated overview of the European landscape. Transpl Int, 33 (1) ( 2020), pp. 76-88
[15]
Adam R, Karam V, Cailliez V, O Grady JG, Mirza D, Cherqui D, et al. 2018 Annual Report of the European Liver Transplant Registry (ELTR)—50-year evolution of liver transplantation. Transpl Int 2018 ;31(12):1293-317.
[16]
R. De Carlis, A. Schlegel, S. Frassoni, T. Olivieri, M. Ravaioli, S. Camagni, et al.. How to preserve liver grafts from circulatory death with long warm ischemia? A retrospective Italian cohort study with normothermic regional perfusion and hypothermic oxygenated perfusion. Transplantation, 105 (11) ( 2021), pp. 2385-2396
[17]
M.E. De Vera, R. Lopez-Solis, I. Dvorchik, S. Campos, W. Morris, A.J. Demetris, et al.. Liver transplantation using donation after cardiac death donors: long-term follow-up from a single center. Am J Transplant, 9 (4) ( 2009), pp. 773-781
[18]
W.J. Jeng, G.V. Papatheodoridis, A.S.F. Lok, B. Hepatitis. Hepatitis B virus infection. Lancet, 401 (10381) ( 2023), pp. 1039-1052
[19]
E. Cholongitas, G.V. Papatheodoridis, A.K. Burroughs. Liver grafts from anti-hepatitis B core positive donors: a systematic review. J Hepatol, 52 (2) ( 2010), pp. 272-279
[20]
S. Yu, J. Yu, W. Zhang, L. Cheng, Y. Ye, L. Geng, et al.. Safe use of liver grafts from hepatitis B surface antigen positive donors in liver transplantation. J Hepatol, 61 (4) ( 2014), pp. 809-815
[21]
D. Donataccio, F. Roggen, C. De Reyck, C. Verbaandert, M. Bodeus, J. Lerut. Use of anti-HBc positive allografts in adult liver transplantation: toward a safer way to expand the donor pool. Transpl Int, 19 (1) ( 2006), pp. 38-43
[22]
D.L. Maness, E. Riley, G. Studebaker, C. Hepatitis. Diagnosis and management. Am Fam Physician, 104 ( 2021), pp. 626-635
[23]
P.S. Ting, J.P. Hamilton, A. Gurakar, N.H. Urrunaga, M. Ma, J. Glorioso, et al.. Hepatitis C-positive donor liver transplantation for hepatitis C seronegative recipients. Transpl Infect Dis, 21 (6) ( 2019), p. e13194
[24]
Wilms C, Walter J, Kaptein M, Mueller L, Lenk C, Sterneck M, et al. Long-term outcome of split liver transplantation using right extended grafts in adulthood: a matched pair analysis. Ann Surg 2006 ;244(6):865-72,discussion872-3.
[25]
C. Hackl, K.M. Schmidt, C. Susal, B. Dohler, M. Zidek, H.J. Schlitt. Split liver transplantation: current developments. World J Gastroenterol, 24 (47) ( 2018), pp. 5312-5321
[26]
B. Nemes, G. Gámán, W.G. Polak, F. Gelley, T. Hara, S. Ono, et al.. Extended-criteria donors in liver transplantation. Part II: reviewing the impact of extended-criteria donors on the complications and outcomes of liver transplantation. Expert Rev Gastroenterol Hepatol, 10 (7) ( 2016), pp. 841-859
[27]
M. Pinezich, G. Vunjak-Novakovic. Bioengineering approaches to organ preservation ex vivo. Exp Biol Med, 244 (8) ( 2019), pp. 630-645
[28]
S. Šušak, A. Redžek, M. Rosić, L. Velicki, B. Okiljević. Development of cardiopulmonary bypass—a historical review. Srp Arh Celok Lek, 144 (11-12) ( 2016), pp. 670-675
[29]
C. Jacobj. A contribution to the art of artificial blood circulation survivor organs. Archiv für experimentelle Pathologie und Pharmakologie, 36 ( 1895), pp. 330-348
[30]
A. Carrel.Landmark article Nov 11, 1911: rejuvenation of cultures of tissues. By Alexis Carrel JAMA, 250 (8) ( 1983), p. 1085
[31]
F.O. Belzer, B.S. Ashby, P.F. Gulyassy, M. Powell. Successful seventeen-hour preservation and transplantation of human-cadaver kidney. N Engl J Med, 278 (11) ( 1968), pp. 608-610
[32]
L. Brettschneider, P.R. Bell, A.J. Martin Jr, J.S. Tarr, P.D. Taylor, T.E. Starzl. Conservation of the liver. Transplant Proc, 1 ( 1969), pp. 132-137
[33]
T.E. Starzl, C.G. Groth, L. Brettschneider, I. Penn, V.A. Fulginiti, J.B. Moon, et al.. Orthotopic homotransplantation of the human liver. Ann Surg, 168 (3) ( 1968), pp. 392-415
[34]
J.V. Guarrera, S.D. Henry, B. Samstein, R. Odeh-Ramadan, M. Kinkhabwala, M.J. Goldstein, et al.. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant, 10 (2) ( 2010), pp. 372-381
[35]
J.V. Guarrera, S.D. Henry, B. Samstein, E. Reznik, C. Musat, T.I. Lukose, et al.. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am J Transplant, 15 (1) ( 2015), pp. 161-169
[36]
R. Van Rijn, I.J. Schurink, Y. de Vries, A.P. van den Berg, M. Cortes Cerisuelo, S. Darwish Murad, et al.. Hypothermic machine perfusion in liver transplantation—a randomized trial. N Engl J Med, 384 (15) ( 2021), pp. 1391-1401
[37]
Liang A, Cheng W, Cao P, Cai S, Zhang L, Zhong K, et al. Effects of machine perfusion strategies on different donor types in liver transplantation: a systematic review and meta-analysis. Int J Surg 2023 ;109(11):3617-30
[38]
A. Schlegel, R. Porte, P. Dutkowski. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J Hepatol, 76 (6) ( 2022), pp. 1330-1347
[39]
A. Schlegel, O. de Rougemont, R. Graf, P.A. Clavien, P. Dutkowski. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J Hepatol, 58 (2) ( 2013), pp. 278-286
[40]
A. Schlegel, M. Mueller, X. Muller, J. Eden, R. Panconesi, S. von Felten, et al.. A multicenter randomized-controlled trial of hypothermic oxygenated perfusion (HOPE) for human liver grafts before transplantation. J Hepatol, 78 (4) ( 2023), pp. 783-793
[41]
A. Parente, F. Tirotta, A. Pini, J. Eden, D. Dondossola, T.M. Manzia, et al.. Machine perfusion techniques for liver transplantation—a meta-analysis of the first seven randomized-controlled trials. J Hepatol, 79 (5) ( 2023), pp. 1201-1213
[42]
R. Van Rijn, O.B. van Leeuwen, A.P.M. Matton, L.C. Burlage, J. Wiersema-Buist, M.C. van den Heuvel, et al.. Hypothermic oxygenated machine perfusion reduces bile duct reperfusion injury after transplantation of donation after circulatory death livers. Liver Transpl, 24 (5) ( 2018), pp. 655-664
[43]
R. Van Rijn, A.P. van den Berg, J.I. Erdmann, N. Heaton, B. van Hoek, J. de Jonge, et al.. Study protocol for a multicenter randomized controlled trial to compare the efficacy of end-ischemic dual hypothermic oxygenated machine perfusion with static cold storage in preventing non-anastomotic biliary strictures after transplantation of liver grafts donated after circulatory death: DHOPE-DCD trial. BMC Gastroenterol, 19 (1) ( 2019), p. 40
[44]
D. Dondossola, M. Ravaioli, C. Lonati, L. Maroni, A. Pini, C. Accardo, et al.. The role of ex situ hypothermic oxygenated machine perfusion and cold preservation time in extended criteria donation after circulatory death and donation after brain death. Liver Transpl, 27 (8) ( 2021), pp. 1130-1143
[45]
D. Nasralla, C.C. Coussios, H. Mergental, M.Z. Akhtar, A.J. Butler, C.D.L. Ceresa, et al.. A randomized trial of normothermic preservation in liver transplantation. Nature, 557 (7703) ( 2018), pp. 50-56
[46]
H. Mergental, R.W. Laing, A.J. Kirkham, M. Perera, Y.L. Boteon, J. Attard, et al.. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat Commun, 11 (1) ( 2020), p. 2939
[47]
A.T. Meszaros, J. Hofmann, M.L. Buch, B. Cardini, T. Dunzendorfer-Matt, F. Nardin, et al.. Mitochondrial respiration during normothermic liver machine perfusion predicts clinical outcome. EBioMedicine, 85 ( 2022), Article 104311
[48]
O.B. Van Leeuwen, Y. de Vries, M. Fujiyoshi, M.W.N. Nijsten, R. Ubbink, G.J. Pelgrim, et al.. Transplantation of high-risk donor livers after ex situ resuscitation and assessment using combined hypo- and normothermic machine perfusion: a prospective clinical trial. Ann Surg, 270 (5) ( 2019), pp. 906-914
[49]
Van Leeuwen OB, Bodewes SB, Porte RJ, Excellent long-term outcome after sequential hypothermic and normothermic machine perfusion challenges the importance of functional donor warm ischemia time in DCD liver transplantation. J Hepatol 2023 ;79(6):E244-5.
[50]
G.M. Collins, M. Bravo-Shugarman, P.I. Terasaki. Kidney preservation for transportation. Initial perfusion and 30 hours’ ice storage. Lancet, 2 (7632) ( 1969), pp. 1219-1222
[51]
N. Serifis, R. Matheson, D. Cloonan, C.G. Rickert, J.F. Markmann, T.M. Coe. Machine perfusion of the liver: a review of clinical trials. Front Surg, 8 ( 2021), Article 625394
[52]
D. Eshmuminov, D. Becker, L. Bautista Borrego, M. Hefti, M.J. Schuler, C. Hagedorn, et al.. An integrated perfusion machine preserves injured human livers for 1 week. Nat Biotechnol, 38 (2) ( 2020), pp. 189-198
[53]
M. Kalisvaart, R. Chadha, E. De Martin, F. Alconchel, N. Goldaracena, O. Keskin, et al..Proceedings of the 26th Annual Virtual Congress of the International Liver Transplantation Society. Transplantation, 106 (9) ( 2022), pp. 1738-1744
[54]
A.M. Thorne, R. Ubbink, I.M.A. Bruggenwirth, M.W. Nijsten, R.J. Porte, V.E. de Meijer. Hyperthermia-induced changes in liver physiology and metabolism: a rationale for hyperthermic machine perfusion. Am J Physiol Gastrointest Liver Physiol, 319 (1) ( 2020), pp. G43-G50
[55]
I. Arnault, Y.M. Bao, M. Sebagh, A. Anjo, J.L. Dimicoli, A. Lemoine, et al.. Beneficial effect of pentoxifylline on microvesicular steatotic livers submitted to a prolonged cold ischemia. Transplantation, 76 (1) ( 2003), pp. 77-83
[56]
I. Ben Mosbah, J. Rosello-Catafau, I. Alfany-Fernandez, A. Rimola, P.P. Parellada, M.T. Mitjavila, et al.. Addition of carvedilol to University Wisconsin solution improves rat steatotic and nonsteatotic liver preservation. Liver Transpl, 16 (2) ( 2010), pp. 163-171
[57]
K. Maida, Y. Akamatsu, Y. Hara, K. Tokodai, S. Miyagi, T. Kashiwadate, et al.. Short oxygenated warm perfusion with prostaglandin E 1 administration before cold preservation as a novel resuscitation method for liver grafts from donors after cardiac death in a rat in vivo model. Transplantation, 100 (5) ( 2016), pp. 1052-1058
[58]
A. Nassar, Q. Liu, K. Farias, G. D’Amico, L. Buccini, D. Urcuyo, et al.. Role of vasodilation during normothermic machine perfusion of DCD porcine livers. Int J Artif Organs, 37 (2) ( 2014), pp. 165-172
[59]
J. Echeverri, N. Goldaracena, J.M. Kaths, I. Linares, R. Roizales, D. Kollmann, et al.. Comparison of BQ123, epoprostenol, and verapamil as vasodilators during normothermic ex vivo liver machine perfusion. Transplantation, 102 (4) ( 2018), pp. 601-608
[60]
D. Nagrath, H. Xu, Y. Tanimura, R. Zuo, F. Berthiaume, M. Avila, et al.. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab Eng, 11 (4-5) ( 2009), pp. 274-283
[61]
M. Xu, F. Zhou, O. Ahmed, G.A. Upadhya, J. Jia, C. Lee, et al.. A novel multidrug combination mitigates rat liver steatosis through activating AMPK pathway during normothermic machine perfusion. Transplantation, 105 (11) ( 2021), pp. e215-e225
[62]
Y.L. Boteon, J. Attard, A. Boteon, L. Wallace, G. Reynolds, S. Hubscher, et al.. Manipulation of lipid metabolism during normothermic machine perfusion: effect of defatting therapies on donor liver functional recovery. Liver Transpl, 25 (7) ( 2019), pp. 1007-1022
[63]
N.I. Nativ, G. Yarmush, A. So, J. Barminko, T.J. Maguire, R. Schloss, et al.. Elevated sensitivity of macrosteatotic hepatocytes to hypoxia/reoxygenation stress is reversed by a novel defatting protocol. Liver Transpl, 20 (8) ( 2014), pp. 1000-1011
[64]
S. Taba Taba Vakili, R. Kailar, K. Rahman, B.G. Nezami, S.M. Mwangi, F.A. Anania, et al.. Glial cell line-derived neurotrophic factor-induced mice liver defatting: a novel strategy to enable transplantation of steatotic livers. Liver Transpl, 22 (4) ( 2016), pp. 459-467
[65]
J. Bi, L. Yang, T. Wang, J. Zhang, T. Li, Y. Ren, et al.. Irisin improves autophagy of aged hepatocytes via increasing telomerase activity in liver injury. Oxid Med Cell Longev, 2020 ( 2020), p. 6946037
[66]
H. van Willigenburg, P.L.J. de Keizer, R.W.F. de Bruin. Cellular senescence as a therapeutic target to improve renal transplantation outcome. Pharmacol Res, 130 ( 2018), pp. 322-330
[67]
H. Liang, P. Zhang, B. Yu, Z. Liu, L. Pan, X. He, et al.. Machine perfusion combined with antibiotics prevents donor-derived infections caused by multidrug-resistant bacteria. Am J Transplant, 22 (7) ( 2022), pp. 1791-1803
[68]
D. Nakajima, M. Cypel, R. Bonato, T.N. Machuca, I. Iskender, K. Hashimoto, et al.. Ex vivo perfusion treatment of infection in human donor lungs. Am J Transplant, 16 (4) ( 2016), pp. 1229-1237
[69]
N. Goldaracena, J. Echeverri, V.N. Spetzler, J.M. Kaths, A.S. Barbas, K.S. Louis, et al.. Anti-inflammatory signaling during ex vivo liver perfusion improves the preservation of pig liver grafts before transplantation. Liver Transpl, 22 (11) ( 2016), pp. 1573-1583
[70]
P.A. Clavien, P. Dutkowski, M. Mueller, D. Eshmuminov, L. Bautista Borrego, A. Weber, et al.. Transplantation of a human liver following 3 days of ex situ normothermic preservation. Nat Biotechnol, 40 (11) ( 2022), pp. 1610-1616
[71]
F.J. Krendl, R. Oberhuber, R. Breitkopf, G. Weiss, S. Schneeberger. Normothermic liver machine perfusion as a dynamic platform for assessment and treatment of organs from septic donors. J Hepatol, 78 (2) ( 2023), pp. e56-e57
[72]
R.V.P. Ribeiro, T. Ku, A. Wang, L. Pires, V.H. Ferreira, V. Michaelsen, et al.. Ex vivo treatment of cytomegalovirus in human donor lungs using a novel chemokine-based immunotoxin. J Heart Lung Transplant, 41 (3) ( 2022), pp. 287-297
[73]
N. Goldaracena, V.N. Spetzler, J. Echeverri, J.M. Kaths, V. Cherepanov, R. Persson, et al.. Inducing hepatitis C virus resistance after pig liver transplantation—a proof of concept of liver graft modification using warm ex vivo perfusion. Am J Transplant, 17 (4) ( 2017), pp. 970-978
[74]
F.A. Helfritz, D. Bojkova, V. Wanders, N. Kuklinski, S. Westhaus, C. von Horn, et al.. Methylene blue treatment of grafts during cold ischemia time reduces the risk of hepatitis C virus transmission. J Infect Dis, 218 (11) ( 2018), pp. 1711-1721
[75]
M. Galasso, J.J. Feld, Y. Watanabe, M. Pipkin, C. Summers, A. Ali, et al.. Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion. Nat Commun, 10 (1) ( 2019), p. 481
[76]
A. Panisello-Roselló, R.T. da Silva, E. Folch-Puy, T. Carbonell, C.M. Palmeira, C. Fondevila, et al.. The use of a single, novel preservation solution in split liver transplantation and hypothermic oxygenated machine perfusion. Transplantation, 106 (3) ( 2022), pp. e187-e188
[77]
M. Spada, R. Angelico, C. Grimaldi, P. Francalanci, M.C. Saffioti, A. Rigamonti, et al.. The new horizon of split-liver transplantation: ex situ liver splitting during hypothermic oxygenated machine perfusion. Liver Transpl, 26 (10) ( 2020), pp. 1363-1367
[78]
M. Nazzal, E.C. Madsen, A. Armstrong, J. van Nispen, V. Murali, E. Song, et al.. Novel NMP split liver model recapitulates human IRI and demonstrates ferroptosis modulators as a new therapeutic strategy. Pediatr Transplant, 26 (2) ( 2021), p. e14164
[79]
M. Mueller, M. Hefti, D. Eshmuminov, M.J. Schuler, R.X. Sousa Da Silva, H. Petrowsky, et al.. Long-term normothermic machine preservation of partial livers: first experience with 21 human hemi-livers. Ann Surg, 274 (5) ( 2021), pp. 836-842
[80]
C.D. Wan, R. Cheng, H.B. Wang, T. Liu. Immunomodulatory effects of mesenchymal stem cells derived from adipose tissues in a rat orthotopic liver transplantation model. Hepatobiliary Pancreat Dis Int, 7 ( 2008), pp. 29-33
[81]
M.M.A. Verstegen, L. Mezzanotte, R.Y. Ridwan, K. Wang, J. de Haan, I.J. Schurink, et al.. First report on ex vivo delivery of paracrine active human mesenchymal stromal cells to liver grafts during machine perfusion. Transplantation, 104 (1) ( 2020), pp. e5-e7
[82]
R.W. Laing, S. Stubblefield, L. Wallace, V.D. Roobrouck, R.H. Bhogal, A. Schlegel, et al.. The delivery of multipotent adult progenitor cells to extended criteria human donor livers using normothermic machine perfusion. Front Immunol, 11 ( 2020), p. 1226
[83]
F. Sampaziotis, D. Muraro, O.C. Tysoe, S. Sawiak, T.E. Beach, E.M. Godfrey, et al.. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science, 371 (6531) ( 2021), pp. 839-846
[84]
M.F. Thijssen, I.M.A. Bruggenwirth, A. Gillooly, A. Khvorova, T.F. Kowalik, P.N. Martins. Gene silencing with siRNA (RNA interference): a new therapeutic option during ex vivo machine liver perfusion preservation. Liver Transpl, 25 (1) ( 2019), pp. 140-151
[85]
E. Bonaccorsi-Riani, A.R. Gillooly, S. Iesari, I.M.A. Brüggenwirth, C.M. Ferguson, M. Komuta, et al.. Delivering siRNA compounds during HOPE to modulate organ function: a proof-of-concept study in a rat liver transplant model. Transplantation, 106 (8) ( 2022), pp. 1565-1576
[86]
J.P. Stone, W.R. Critchley, T. Major, G. Rajan, I. Risnes, H. Scott, et al.. Altered immunogenicity of donor lungs via removal of passenger leukocytes using ex vivo lung perfusion. Am J Transplant, 16 (1) ( 2016), pp. 33-43
[87]
M.L. Stone, Y. Zhao, J. Robert Smith, M.L. Weiss, I.L. Kron, V.E. Laubach, et al.. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death. Respir Res, 18 (1) ( 2017), p. 212
[88]
Z. Du, S. Dong, P. Lin, S. Chen, S. Wu, S. Zhang, et al.. Warm ischemia may damage peribiliary vascular plexus during DCD liver transplantation. Int J Clin Exp Med, 8 ( 2015), pp. 758-763
[89]
S. Op den Dries, A.C. Westerkamp, N. Karimian, A.S. Gouw, B.G. Bruinsma, J.F. Markmann, et al.. Injury to peribiliary glands and vascular plexus before liver transplantation predicts formation of non-anastomotic biliary strictures. J Hepatol, 60 ( 2014), pp. 1172-1179
[90]
P. Marteau, F. Ballet, Y. Chretien, C. Rey, P. Jaillon, R. Poupon. Effect of vasodilators on hepatic microcirculation: a study of the inhibition of norepinephrine-induced vasoconstriction in the isolated perfused rat liver. Hepatology, 8 (2) ( 1988), pp. 228-231
[91]
L.J. Cohn. Carvedilol. N Engl J Med, 340 (18) ( 1999), pp. 1443-1444
[92]
C.J. Verhoeven, T.C. Simon, J. de Jonge, M. Doukas, K. Biermann, H.J. Metselaar, et al.. Liver grafts procured from donors after circulatory death have no increased risk of microthrombi formation. Liver Transpl, 22 (12) ( 2016), pp. 1676-1687
[93]
Y. Hara, Y. Akamatsu, K. Maida, T. Kashiwadate, Y. Kobayashi, N. Ohuchi, et al.. A new liver graft preparation method for uncontrolled non-heart-beating donors, combining short oxygenated warm perfusion and prostaglandin E1. J Surg Res, 184 (2) ( 2013), pp. 1134-1142
[94]
S. Ijaz, W. Yang, M.C. Winslet, A.M. Seifalian. The role of nitric oxide in the modulation of hepatic microcirculation and tissue oxygenation in an experimental model of hepatic steatosis. Microvasc Res, 70 (3) ( 2005), pp. 129-136
[95]
K. Nagai, S. Yagi, M. Afify, C. Bleilevens, S. Uemoto, R.H. Tolba. Impact of venous-systemic oxygen persufflation with nitric oxide gas on steatotic grafts after partial orthotopic liver transplantation in rats. Transplantation, 95 (1) ( 2013), pp. 78-84
[96]
G.T. Tietjen, S.A. Hosgood, J. DiRito, J. Cui, D. Deep, E. Song, et al.. Nanoparticle targeting to the endothelium during normothermic machine perfusion of human kidneys. Sci Transl Med, 9 (418) ( 2017), Article eaam6764
[97]
B. Lascaris, V.E. de Meijer, R.J. Porte. Normothermic liver machine perfusion as a dynamic platform for regenerative purposes: what does the future have in store for us?. J Hepatol, 77 (3) ( 2022), pp. 825-836
[98]
Y.L. Boteon, A. Boteon, J. Attard, H. Mergental, D.F. Mirza, R.H. Bhogal, et al.. Ex situ machine perfusion as a tool to recondition steatotic donor livers: troublesome features of fatty livers and the role of defatting therapies. A systematic review. Am J Transplant, 18 (10) ( 2018), pp. 2384-2399
[99]
H. Chen, F. Shen, A. Sherban, A. Nocon, Y. Li, H. Wang, et al.. DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease. Hepatology, 68 (2) ( 2018), pp. 496-514
[100]
W. Zhou, S. Ye. Rapamycin improves insulin resistance and hepatic steatosis in type 2 diabetes rats through activation of autophagy. Cell Biol Int, 42 (10) ( 2018), pp. 1282-1291
[101]
H. Xu, X. Du, G. Liu, S. Huang, W. Du, S. Zou, et al.. The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation. Mol Metab, 23 ( 2019), pp. 14-23
[102]
Aoudjehane L, Gautheron J, Le Goff W, Goumard C, Gilaizeau J, Nget CS, et al. Novel defatting strategies reduce lipid accumulation in primary human culture models of liver steatosis. Dis Model Mech 2020;13:dmm042663.
[103]
M.B. Doyle, N. Vachharajani, J.R. Wellen, C.D. Anderson, J.A. Lowell, S. Shenoy, et al.. Short- and long-term outcomes after steatotic liver transplantation. Arch Surg, 145 (7) ( 2010), pp. 653-660
[104]
A.C. Westerkamp, M.T. de Boer, A.P. van den Berg, A.S. Gouw, R.J. Porte. Similar outcome after transplantation of moderate macrovesicular steatotic and nonsteatotic livers when the cold ischemia time is kept very short. Transpl Int, 28 (3) ( 2015), pp. 319-329
[105]
S.M. Mwangi, S. Peng, B.G. Nezami, N. Thorn, A.B. Farris 3rd, S. Jain, et al.. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression. Am J Physiol Gastrointest Liver Physiol, 310 (2) ( 2016), pp. G103-G116
[106]
S. Mwangi, M. Anitha, C. Mallikarjun, X. Ding, M. Hara, A. Parsadanian, et al.. Glial cell line-derived neurotrophic factor increases β-cell mass and improves glucose tolerance. Gastroenterology, 134 (3) ( 2008), pp. 727-737
[107]
S.M. Mwangi, B.G. Nezami, B. Obukwelu, M. Anitha, S. Marri, P. Fu, et al.. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity. Am J Physiol Gastrointest Liver Physiol, 306 (6) ( 2014), pp. G515-G525
[108]
D. Ghinolfi, E. Rreka, V. De Tata, M. Franzini, D. Pezzati, V. Fierabracci, et al.. Pilot, open, randomized, prospective trial for normothermic machine perfusion evaluation in liver transplantation from older donors. Liver Transpl, 25 (3) ( 2019), pp. 436-449
[109]
Wang JH, Ahn IS, Fischer TD, Byeon JI, Dunn WA Jr., Behrns KE, et al. Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology 2011 ;141(6):2188-99e6.
[110]
A. Ohman, S. Raigani, J.C. Santiago, M.G. Heaney, J.M. Boylan, N. Parry, et al.. Activation of autophagy during normothermic machine perfusion of discarded livers is associated with improved hepatocellular function. Am J Physiol Gastrointest Liver Physiol, 322 (1) ( 2022), pp. G21-G33
[111]
M. Ogrodnik, S. Miwa, T. Tchkonia, D. Tiniakos, C.L. Wilson, A. Lahat, et al.. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun, 8 (1) ( 2017), p. 15691
[112]
M. Sasaki, Y. Sato, Y. Nakanuma. Increased p16(INK4a)-expressing senescent bile ductular cells are associated with inadequate response to ursodeoxycholic acid in primary biliary cholangitis. J Autoimmun, 107 ( 2020), Article 102377
[113]
L. Prata, I.G. Ovsyannikova, T. Tchkonia, J.L. Kirkland. Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin Immunol, 40 ( 2018), Article 101275
[114]
I.A. Echenique, M.G. Ison. Update on donor-derived infections in liver transplantation. Liver Transpl, 19 (6) ( 2013), pp. 575-585
[115]
Gurusamy KS, Nagendran M, Davidson BR. Methods of preventing bacterial sepsis and wound complications after liver transplantation. Cochrane Database Syst Rev 2008;(4):CD006660.
[116]
K.M. Chan, C.H. Cheng, T.H. Wu, C.F. Lee, T.J. Wu, H.S. Chou, et al.. Impact of donor with evidence of bacterial infections on deceased donor liver transplantation: a retrospective observational cohort study in Taiwan. BMJ Open, 9 (3) ( 2019), p. e023908
[117]
García-Carrera CJ, Rivera-Lopez FE, Papacristofilou-Riebeling B, Fernández-García OA, García-Juárez I. Liver transplantation from a donor with multidrug-resistant Acinetobacter baumannii infection. Is it a risk? Rev Gastroenterol Mex 2023;S2255-534X(23)00089-0.
[118]
D.Y. Zeng, J.M. Li, S. Lin, X. Dong, J. You, Q.Q. Xing, et al.. Global burden of acute viral hepatitis and its association with socioeconomic development status, 1990-2019. J Hepatol, 75 (3) ( 2021), pp. 547-556
[119]
N. Singh, D.J. Winston, R.R. Razonable, G.M. Lyon, F.P. Silveira, M.M. Wagener, et al.. Effect of preemptive therapy vs antiviral prophylaxis on cytomegalovirus disease in seronegative liver transplant recipients with seropositive donors: a randomized clinical trial. JAMA, 323 (14) ( 2020), pp. 1378-1387
[120]
I. Lautenschlager. CMV infection, diagnosis and antiviral strategies after liver transplantation. Transpl Int, 22 (11) ( 2009), pp. 1031-1040
[121]
H. Nam, K.M. Nilles, J. Levitsky, M.G. Ison. Donor-derived viral infections in liver transplantation. Transplantation, 102 (11) ( 2018), pp. 1824-1836
[122]
N. Kapila, K.V.N. Menon, K. Al-Khalloufi, J.M. Vanatta, C. Murgas, D. Reino, et al.. Hepatitis C virus NAT-positive solid organ allografts transplanted into hepatitis C virus-negative recipients: a real-world experience. Hepatology, 72 (1) ( 2020), pp. 32-41
[123]
M. Cypel, J.J. Feld, M. Galasso, R.V. Pinto Ribeiro, N. Marks, M. Kuczynski, et al.. Prevention of viral transmission during lung transplantation with hepatitis C-viraemic donors: an open-label, single-centre, pilot trial. Lancet Respir Med, 8 (2) ( 2020), pp. 192-201
[124]
J.F. Crismale, J. Ahmad. Expanding the donor pool: hepatitis C, hepatitis B and human immunodeficiency virus-positive donors in liver transplantation. World J Gastroenterol, 25 (47) ( 2019), pp. 6799-6812
[125]
D. Ishii, N. Matsuno, M. Gochi, H. Iwata, T. Shonaka, Y. Nishikawa, et al.. Beneficial effects of end-ischemic oxygenated machine perfusion preservation for split-liver transplantation in recovering graft function and reducing ischemia-reperfusion injury. Sci Rep, 11 (1) ( 2021), p. 22608
[126]
J.Y. Mabrut, M. Lesurtel, X. Muller, R. Dubois, C. Ducerf, G. Rossignol, et al.. Ex vivo liver splitting and hypothermic oxygenated machine perfusion: technical refinements of a promising preservation strategy in split liver transplantation. Transplantation, 105 (8) ( 2021), pp. e89-e90
[127]
A.M. Thorne, V. Lantinga, S. Bodewes, R.H.J. de Kleine, M.W. Nijkamp, J. Sprakel, et al.. Ex situ dual hypothermic oxygenated machine perfusion for human split liver transplantation. Transplant Direct, 7 (3) ( 2021), p. e666
[128]
I.M.A. Brüggenwirth, V.A. Lantinga, M. Rayar, A.P. van den Berg, H. Blokzijl, K. Reyntjens, et al.. Prolonged dual hypothermic oxygenated machine preservation (DHOPE-PRO) in liver transplantation: study protocol for a stage 2, prospective, dual-arm, safety and feasibility clinical trial. BMJ Open Gastroenterol, 9 (1) ( 2022), Article e000842
[129]
Z.B. Zhang, W. Gao, L. Liu, Y. Shi, N. Ma, M.S. Huai, et al.. Normothermic machine perfusion protects against liver ischemia-reperfusion injury during reduced-size liver transplantation in pigs. Ann Transplant, 24 ( 2019), pp. 9-17
[130]
Jacobs SA, Pinxteren J, Roobrouck VD, Luyckx A, van’t Hof W, Deans R, et al. Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses. Cell Transplant 2013 ;22(10):1915-28.
[131]
J. Zheng, T. Lu, C. Zhou, J. Cai, X. Zhang, J. Liang, et al.. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect liver ischemia/reperfusion injury by reducing CD 154 expression on CD4+ T cells via CCT2. Adv Sci, 7 (18) ( 2020), Article 1903746
[132]
L. Yang, H. Cao, D. Sun, B. Hou, L. Lin, Z.Y. Shen, et al.. Bone marrow mesenchymal stem cells combine with normothermic machine perfusion to improve rat donor liver quality—the important role of hepatic microcirculation in donation after circulatory death. Cell Tissue Res, 381 (2) ( 2020), pp. 239-254
[133]
D. Sun, L. Yang, W. Zheng, H. Cao, L. Wu, H. Song. Protective effects of bone marrow mesenchymal stem cells (BMMSCS) combined with normothermic machine perfusion on liver grafts donated after circulatory death via reducing the ferroptosis of hepatocytes. Med Sci Monit, 27 ( 2021), Article e930258
[134]
L. Yang, H. Cao, D. Sun, L. Lin, W.P. Zheng, Z.Y. Shen, et al.. Normothermic machine perfusion combined with bone marrow mesenchymal stem cells improves the oxidative stress response and mitochondrial function in rat donation after circulatory death livers. Stem Cells Dev, 29 (13) ( 2020), pp. 835-852
[135]
Roos FJM, van Tienderen GS, Wu H, Bordeu I, Vinke D, Albarinos LM, et al. Human branching cholangiocyte organoids recapitulate functional bile duct formation. Cell Stem Cell 2022 ;29(5):776-94.e13.
[136]
J. Yu, Z. Liu, C. Li, Q. Wei, S. Zheng, K. Saeb-Parsy, et al.. Regulatory T cell therapy following liver transplantation. Liver Transpl, 27 (2) ( 2021), pp. 264-280
[137]
A.R. Gillooly, J. Perry, P.N. Martins. First report of siRNA uptake (for RNA interference) during ex vivo hypothermic and normothermic liver machine perfusion. Transplantation, 103 (3) ( 2019), pp. e56-e57
[138]
I.M.A. Bruggenwirth, P.N. Martins. RNA interference therapeutics in organ transplantation: the dawn of a new era. Am J Transplant, 20 (4) ( 2020), pp. 931-941
[139]
S.D. Henry, E. Nachber, J. Tulipan, J. Stone, C. Bae, L. Reznik, et al.. Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation. Am J Transplant, 12 (9) ( 2012), pp. 2477-2486
[140]
H. Lauschke, P. Olschewski, R. Tolba, S. Schulz, T. Minor. Oxygenated machine perfusion mitigates surface antigen expression and improves preservation of predamaged donor livers. Cryobiology, 46 (1) ( 2003), pp. 53-60
PDF(1605 KB)

Accesses

Citations

Detail

Sections
Recommended

/