The Notch Signaling Pathway: Mechanistic Insights in Health and Disease

Yao Meng, Zhihan Bo, Xinyi Feng, Xinyi Yang, Penny A. Handford

Engineering ›› 2024, Vol. 34 ›› Issue (3) : 212-232.

PDF(3818 KB)
PDF(3818 KB)
Engineering ›› 2024, Vol. 34 ›› Issue (3) : 212-232. DOI: 10.1016/j.eng.2023.11.011
Research
Review

The Notch Signaling Pathway: Mechanistic Insights in Health and Disease

Author information +
History +

Abstract

The Notch signaling pathway is evolutionarily conserved across metazoan species and plays key roles in many physiological processes. The Notch receptor is activated by two families of canonical ligands (Delta-like and Serrate/Jagged) where both ligands and receptors are single-pass transmembrane proteins usually with large extracellular domains, relative to their intracellular portions. Upon interaction of the core binding regions, presented on opposing cell surfaces, formation of the receptor/ligand complex initiates force-mediated proteolysis, ultimately releasing the transcriptionally-active Notch intracellular domain. This review focuses on structural features of the extracellular receptor/ligand complex, the role of post-translational modifications in tuning this complex, the contribution of the cell membrane to ligand function, and insights from acquired and genetic diseases.

Graphical abstract

Keywords

Notch signaling pathway / Structural biology / Glycosylation / Genetic disorders / Cancer / Pharmacological agents

Cite this article

Download citation ▾
Yao Meng, Zhihan Bo, Xinyi Feng, Xinyi Yang, Penny A. Handford. The Notch Signaling Pathway: Mechanistic Insights in Health and Disease. Engineering, 2024, 34(3): 212‒232 https://doi.org/10.1016/j.eng.2023.11.011

References

[1]
O. Gozlan, D. Sprinzak. Notch signaling in development and homeostasis. Development, 150 (4) (2023), dev201138.
[2]
K. Duvall, L. Crist, A.J. Perl, N. Pode Shakked, P. Chaturvedi, R. Kopan. Revisiting the role of Notch in nephron segmentation confirms a role for proximal fate selection during mouse and human nephrogenesis. Development, 149 (10) (2022), dev200446.
[3]
P.A. Seymour, C.A. Collin, A.R. Egeskov-Madsen, M.C. Jørgensen, H. Shimojo, I. Imayoshi, et al. Jag1 modulates an oscillatory Dll1-Notch-Hes1 signaling module to coordinate growth and fate of pancreatic progenitors. Dev Cell, 52 (6) (2020), pp. 731-747.e8.
[4]
C. Porcheri, O. Golan, F.J. Calero-Nieto, R. Thambyrajah, C. Ruiz-Herguido, X. Wang, et al. Notch ligand Dll 4 impairs cell recruitment to aortic clusters and limits blood stem cell generation. EMBO J, 39 (8) (2020), p. e104270.
[5]
F.M. Kobia, K. Preusse, Q. Dai, N. Weaver, M.R. Hass, P. Chaturvedi, et al. Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biol, 18 (10) (2020), p. e3000850.
[6]
R. Logeay, C. Géminard, P. Lassus, M. Rodríguez-Vázquez, D. Kantar, L. Heron-Milhavet, et al. Mechanisms underlying the cooperation between loss of epithelial polarity and Notch signaling during neoplastic growth in Drosophila. Development, 149 (3) (2022), dev200110.
[7]
R.J. Suckling, B. Korona, P. Whiteman, C. Chillakuri, L. Holt, P.A. Handford, et al. Structural and functional dissection of the interplay between lipid and Notch binding by human Notch ligands. EMBO J, 36 (15) (2017), pp. 2204-2215.
[8]
Y. Meng, S. Sanlidag, S.A. Jensen, S.A. Burnap, W.B. Struwe, A.H. Larsen, et al. An N-glycan on the C 2 domain of JAGGED1 is important for Notch activation. Sci Signal, 15 (755) (2022), eabo3507.
[9]
T. Martins, Y. Meng, B. Korona, R. Suckling, S. Johnson, P.A. Handford, et al. The conserved C 2 phospholipid-binding domain in Delta contributes to robust Notch signalling. EMBO Rep, 22 (10) (2021), p. e52729.
[10]
V.C. Luca, B.C. Kim, C. Ge, S. Kakuda, D. Wu, M. Roein-Peikar, et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science, 355 (6331) (2017), pp. 1320-1324.
[11]
V.C. Luca, K.M. Jude, N.W. Pierce, M.V. Nachury, S. Fischer, K.C. Garcia. Structural basis for Notch1 engagement of Delta-like 4. Science, 347 (6224) (2015), pp. 847-853.
[12]
S.J. Bray, M.. Gomez-Lamarca. Notch after cleavage. Curr Opin Cell Biol, 51 (2018), pp. 103-109.
[13]
J. Falo-Sanjuan, N.C. Lammers, H.G. Garcia, S.J. Bray. Enhancer priming enables fast and sustained transcriptional responses to Notch signaling. Dev Cell, 50 (4) (2019), pp. 411-425.e8.
[14]
R. Kopan, M.X.G. Ilagan. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 137 (2) (2009), pp. 216-233.
[15]
F. Oswald, R.A. Kovall. CSL-associated corepressor and coactivator complexes. Adv Exp Med Biol, 1066 (2018), pp. 279-295.
[16]
D. Henrique, F. Schweisguth. Mechanisms of Notch signaling: a simple logic deployed in time and space. Development, 146 (3) (2019), dev172148.
[17]
D. Sprinzak, S.C. Blacklow. Biophysics of Notch signaling. Annu Rev Biophys, 50 (1) (2021), pp. 157-189.
[18]
J.F. De Celis, S. Bray. Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development, 124 (17) (1997), pp. 3241-3251.
[19]
D. Sprinzak, A. Lakhanpal, L. Lebon, L.A. Santat, M.E. Fontes, G.A. Anderson, et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature, 465 (7294) (2010), pp. 86-90.
[20]
F. Del Gaudio, D. Liu, U. Lendahl. Notch signalling in healthy and diseased vasculature. Open Biol, 12 (4) (2022), 220004.
[21]
T. Troost, U. Binshtok, D. Sprinzak, T. Klein. Cis-inhibition suppresses basal Notch signaling during sensory organ precursor selection. Proc Natl Acad Sci USA, 120 (23) (2023), e2214535120.
[22]
N. Nandagopal, L.A. Santat, M.B. Elowitz. Cis-activation in the Notch signaling pathway. Elife, 8 (2019), p. e37880.
[23]
G. Chapman, D.B. Sparrow, E. Kremmer, S.L. Dunwoodie. Notch inhibition by the ligand Delta-like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet, 20 (5) (2011), pp. 905-916.
[24]
K. Serth, K. Schuster-Gossler, E. Kremmer, B. Hansen, B. Marohn-Köhn, A. Gossler. O-fucosylation of DLL3 is required for its function during somitogenesis. PLoS One, 10 (4) (2015), p. e0123776.
[25]
F.A. Carrieri, P.J. Murray, D. Ditsova, M.A. Ferris, P. Davies, J.K. Dale. CDK1 and CDK2 regulate NICD1 turnover and the periodicity of the segmentation clock. EMBO Rep, 20 (7) (2019), p. e46436.
[26]
B.D. Giaimo, E.K. Gagliani, R.A. Kovall, T. Borggrefe. Transcription factor RBPJ as a molecular switch in regulating the Notch response. Adv Exp Med Biol, 1287 (2021), pp. 9-30.
[27]
P.A. Handford, M. Mayhew, M. Baron, P.R. Winship, I.D. Campbell, G.G. Brownlee. Key residues involved in calcium-binding motifs in EGF-like domains. Nature, 351 (6322) (1991), pp. 164-167.
[28]
D. Bellavia, S. Checquolo, A.F. Campese, M.P. Felli, A. Gulino, I. Screpanti. Notch3: from subtle structural differences to functional diversity. Oncogene, 27 (38) (2008), pp. 5092-5098.
[29]
A.C. James, J.O. Szot, K. Iyer, J.A. Major, S.E. Pursglove, G. Chapman, et al. Notch 4 reveals a novel mechanism regulating Notch signal transduction. Biochim Biophys Acta, 1843 (7) (2014), pp. 1272-1284.
[30]
H. Komatsu, M.Y. Chao, J. Larkins-Ford, M.E. Corkins, G.A. Somers, T. Tucey, et al. OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. PLoS Biol, 6 (8) (2008), p. e196.
[31]
W.R. Gordon, M. Roy, D. Vardar-Ulu, M. Garfinkel, M.R. Mansour, J.C. Aster, et al. Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood, 113 (18) (2009), pp. 4381-4390.
[32]
J. Cordle, S. Johnson, J. Zi, Y. Tay, P. Roversi, M. Wilkin, et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat Struct Mol Biol, 15 (8) (2008), pp. 849-857.
[33]
S. Hambleton, N.V. Valeyev, A. Muranyi, V. Knott, J.M. Werner, A.J. McMichael, et al. Structural and functional properties of the human Notch-1 ligand binding region. Structure, 12 (12) (2004), pp. 2173-2183.
[34]
W.R. Gordon, D. Vardar-Ulu, G. Histen, C. Sanchez-Irizarry, J.C. Aster, S.C. Blacklow. Structural basis for autoinhibition of Notch. Nat Struct Mol Biol, 14 (4) (2007), pp. 295-300.
[35]
S. Kidd, T. Lieber. Furin cleavage is not a requirement for Drosophila Notch function. Mech Dev, 115 (1-2) (2002), pp. 41-51.
[36]
F. Logeat, C. Bessia, C. Brou, O. LeBail, S. Jarriault, N.G. Seidah, et al. The Notch 1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA, 95 (14) (1998), pp. 8108-8112.
[37]
I. Pfeffer, L. Brewitz, T. Krojer, S.A. Jensen, G.T. Kochan, N.J. Kershaw, et al. Aspartate/asparagine-β-hydroxylase crystal structures reveal an unexpected epidermal growth factor-like domain substrate disulfide pattern. Nat Commun, 10 (1) (2019), p. 4910.
[38]
K. Matsumoto, K.B. Luther, R.S. Haltiwanger. Diseases related to Notch glycosylation. Mol Aspects Med, 79 (2021), 100938.
[39]
H. Takeuchi, H. Yu, H. Hao, M. Takeuchi, A. Ito, H. Li, et al. O-glycosylation modulates the stability of epidermal growth factor-like repeats and thereby regulates Notch trafficking. J Biol Chem, 292 (38) (2017), pp. 15964-15973.
[40]
A.K. Downing, V. Knott, J.M. Werner, C.M. Cardy, I.D. Campbell, P.A. Handford. Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell, 85 (4) (1996), pp. 597-605.
[41]
P.C. Weisshuhn, D. Sheppard, P. Taylor, P. Whiteman, S.M. Lea, P.A. Handford, et al. Non-linear and flexible regions of the human Notch 1 extracellular domain revealed by high-resolution structural studies. Structure, 24 (4) (2016), pp. 555-566.
[42]
S. Kettle, X. Yuan, G. Grundy, V. Knott, A.K. Downing, P.A. Handford. Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function. J Mol Biol, 285 (3) (1999), pp. 1277-1287.
[43]
J.F. De Celis, A. Garcia-Bellido. Modifications of the Notch function by Abruptex mutations in Drosophila melanogaster. Genetics, 136 (1) (1994), pp. 183-194.
[44]
I. Rebay, R.J. Fleming, R.G. Fehon, L. Cherbas, P. Cherbas, S. Artavanis-Tsakonas. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for notch as a multifunctional receptor. Cell, 67 (4) (1991), pp. 687-699.
[45]
P. Taylor, H. Takeuchi, D. Sheppard, C. Chillakuri, S.M. Lea, R.S. Haltiwanger, et al. Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch 1 increases binding to mammalian Notch ligands. Proc Natl Acad Sci USA, 111 (20) (2014), pp. 7290-7295.
[46]
M.R. Zeronian, O. Klykov, J. Portell i de Montserrat, M.J. Konijnenberg, A. Gaur, R.A. Scheltema, et al. Notch-Jagged signaling complex defined by an interaction mosaic. Proc Natl Acad Sci USA, 118 (30) (2021), e2102502118.
[47]
K. Tiyanont, T.E. Wales, M. Aste-Amezaga, J.C. Aster, J.R. Engen, S.C. Blacklow. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure, 19 (4) (2011), pp. 546-554.
[48]
M.D. Rand, L.M. Grimm, S. Artavanis-Tsakonas, V. Patriub, S.C. Blacklow, J. Sklar, et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol, 20 (5) (2000), pp. 1825-1835.
[49]
L. Morsut, K.T. Roybal, X. Xiong, R.M. Gordley, S.M. Coyle, M. Thomson, et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell, 164 (4) (2016), pp. 780-791.
[50]
K.T. Roybal, L.J. Rupp, L. Morsut, W.J. Walker, K.A. McNally, J.S. Park, et al. Precision tumor recognition by T cells with combinatorial antigen sensing circuits. Cell, 164 (4) (2016), pp. 770-779.
[51]
J.H. Cho, A. Okuma, D. Al-Rubaye, E. Intisar, R.P. Junghans, W.W. Wong. Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Sci Rep, 8 (1) (2018), p. 3846.
[52]
Z. Wang, F. Wang, J. Zhong, T. Zhu, Y. Zheng, T. Zhao, et al. Using apelin-based synthetic Notch receptors to detect angiogenesis and treat solid tumors. Nat Commun, 11 (1) (2020), p. 2163.
[53]
A. Hyrenius-Wittsten, Y. Su, M. Park, J.M. Garcia, J. Alavi, N. Perry, et al. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci Transl Med, 13 (591) (2021), eabd8836.
[54]
J.H. Choe, P.B. Watchmaker, M.S. Simic, R.D. Gilbert, A.W. Li, N.A. Krasnow, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med, 13 (591) (2021), eabe7378.
[55]
D.C. Sloas, J.C. Tran, A.M. Marzilli, J.T. Ngo. Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection. Nat Biotechnol, 2023 (9) (2023), pp. 1-9.
[56]
Z.J. Yang, Z.Y. Yu, Y.M. Cai, R.R. Du, L. Cai. Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Commun Bio, 3 (1) (2020), p. 116.
[57]
A.N. Hayward, E.J. Aird, W.R. Gordon. A toolkit for studying cell surface shedding of diverse transmembrane receptors. eLife, 8 (2019), e46983.
[58]
W.R. Gordon, B. Zimmerman, L. He, L.J. Miles, J. Huang, K. Tiyanont, et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev Cell, 33 (6) (2015), pp. 729-736.
[59]
A.L. Parks, K.M. Klueg, J.R. Stout, M.A. Muskavitch. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development, 127 (7) (2000), pp. 1373-1385.
[60]
J. Pei, N.V. Grishin. Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54. Protein Sci, 26 (3) (2017), pp. 617-630.
[61]
M.R. Kelley, S. Kidd, W.A. Deutsch, M.W. Young. Mutations altering the structure of epidermal growth factor-like coding sequences at the Drosophila Notch locus. Cell, 51 (4) (1987), pp. 539-548.
[62]
P. Portin. Allelic negative complementation at the Abruptex locus of Drosophila melanogaster. Genetics, 81 (1) (1975), pp. 121-133.
[63]
A.K. Ohlin, G. Landes, P. Bourdon, C. Oppenheimer, R. Wydro, J. Stenflo. Beta-hydroxyaspartic acid in the first epidermal growth factor-like domain of protein C. Its role in Ca2+ binding and biological activity. J Biol Chem, 263 (35) (1988), pp. 19240-19248.
[64]
G.G. Foster. Negative complementation at the notch locus of Drosophila melanogaster. Genetics, 81 (1) (1975), pp. 99-120.
[65]
C.R. Chillakuri, D. Sheppard, M.X. Ilagan, L.R. Holt, F. Abbott, S. Liang, et al. Structural analysis uncovers lipid-binding properties of Notch ligands. Cell Rep, 5 (4) (2013), pp. 861-867.
[66]
R.H.P. Law, N. Lukoyanova, I. Voskoboinik, T.T. Caradoc-Davies, K. Baran, M.A. Dunstone, et al. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature, 468 (7322) (2010), pp. 447-451.
[67]
S. Corbalan-Garcia, J.C. Gómez-Fernández. Signaling through C2 domains: more than one lipid target. Biochim Biophys Acta, 1838 (6) (2014), pp. 1536-1547.
[68]
Y. Hirano, Y.G. Gao, D.J. Stephenson, N.T. Vu, L. Malinina, D.K. Simanshu, et al. Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A2α. eLife, 8 (2019), e44760.
[69]
N.J. Kershaw, N.L. Church, M.D.W. Griffin, C.S. Luo, T.E. Adams, A.W. Burgess. Notch ligand delta-like1: X-ray crystal structure and binding affinity. Biochem J, 468 (1) (2015), pp. 159-166.
[70]
K. Shimizu, S. Chiba, K. Kumano, N. Hosoya, T. Takahashi, Y. Kanda, et al. Mouse Jagged 1 physically interacts with Notch2 and other Notch receptors. Assessment by quantitative methods. J Biol Chem, 274 (46) (1999), pp. 32961-32969.
[71]
R.J. Fleming. Ligand-induced cis-inhibition of Notch signaling: the role of an extracellular region of Serrate. Adv Exp Med Biol, 1227 (2020), pp. 29-49.
[72]
B. D’souza, A. Miyamoto, G. Weinmaster. The many facets of Notch ligands. Oncogene, 27 (38) (2008), pp. 5148-5167.
[73]
T. Kiyota, T. Kinoshita. Cysteine-rich region of X-Serrate-1 is required for activation of Notch signaling in Xenopus primary neurogenesis. Int J Dev Biol, 46 (2002), pp. 1057-1060.
[74]
S. Yamamoto, W.L. Charng, N.A. Rana, S. Kakuda, M. Jaiswal, V. Bayat, et al. A mutation in EGF repeat-8 of notch discriminates between Serrate/Jagged and delta family ligands. Science, 338 (6111) (2012), pp. 1229-1232.
[75]
D. Gonzalez-Perez, S. Das, D. Antfolk, H.S. Ahsan, E. Medina, C.E. Dundes, et al. Affinity-matured DLL 4 ligands as broad-spectrum modulators of Notch signaling. Nat Chem Biol, 19 (1) (2023), pp. 9-17.
[76]
K.D. Irvine, E. Wieschaus. Fringe, a boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell, 79 (4) (1994), pp. 595-606.
[77]
K. Brückner, L. Perez, H. Clausen, S. Cohen. Glycosyltransferase activity of fringe modulates Notch-Delta interactions. Nature, 406 (6794) (2000), pp. 411-415.
[78]
D.J. Moloney, V.M. Panin, S.H. Johnston, J. Chen, L. Shao, R. Wilson, et al. Fringe is a glycosyltransferase that modifies Notch. Nature, 406 (6794) (2000), pp. 369-375.
[79]
H. Takeuchi, M. Schneider, D.B. Williamson, A. Ito, M. Takeuchi, P.A. Handford, et al. Two novel protein O-glucosyltransferases that modify sites distinct from POGLUT1 and affect Notch trafficking and signaling. Proc Natl Acad Sci USA, 115 (36) (2018), pp. E8395-E8402.
[80]
M.B. Andrawes, X. Xu, H. Liu, S.B. Ficarro, J.A. Marto, J.C. Aster, et al. Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J Biol Chem, 288 (35) (2013), pp. 25477-25489.
[81]
F. Pennarubia, A. Ito, M. Takeuchi, R.S. Haltiwanger. Cancer-associated Notch receptor variants lead to O-fucosylation defects that deregulate Notch signaling. J Biol Chem, 298 (12) (2022), 102616.
[82]
Y. Yokoi, S.I. Nishimura. Effect of site-specific O-glycosylation on the structural behavior of NOTCH1 receptor extracellular EGF-like domains 11 and 10. Chemistry, 26 (54) (2020), pp. 12363-12372.
[83]
W. Saiki, C. Ma, T. Okajima, H. Takeuchi. Current views on the roles of O-glycosylation in controlling notch-ligand interactions. Biomolecules, 11 (2) (2021), p. 309.
[84]
H. Takeuchi, R.S. Haltiwanger. Role of glycosylation of Notch in development. Semin Cell Dev Biol, 21 (6) (2010), pp. 638-645.
[85]
Y. Wang, G.F. Lee, R.F. Kelley, M.W. Spellman. Identification of a GDP-L-fucose: polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology, 6 (8) (1996), pp. 837-842.
[86]
Y. Wang, L. Shao, S. Shi, R.J. Harris, M.W. Spellman, P. Stanley, et al. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J Biol Chem, 276 (2001), pp. 40338-40345.
[87]
B.C. Holdener, R.S. Haltiwanger. Protein O-fucosylation: structure and function. Curr Opin Struct Biol, 56 (2019), pp. 78-86.
[88]
S.H. Johnston, C. Rauskolb, R. Wilson, B. Prabhakaran, K.D. Irvine, T.F. Vogt. A family of mammalian fringe genes implicated in boundary determination and the Notch pathway. Development, 124 (11) (1997), pp. 2245-2254.
[89]
B. Cohen, A. Bashirullah, L. Dagnino, C. Campbell, W.W. Fisher, C.C. Leow, et al. Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nat Genet, 16 (3) (1997), pp. 283-288.
[90]
L. LeBon, T.V. Lee, D. Sprinzak, H. Jafar-Nejad, M.B. Elowitz. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. eLife, 3 (2014), e02950.
[91]
A. Pandey, B.M. Harvey, M.F. Lopez, A. Ito, R.S. Haltiwanger, H. Jafar-Nejad. Glycosylation of specific Notch EGF repeats by O-Fut1 and fringe regulates Notch signaling in Drosophila. Cell Rep, 29 (7) (2019), pp. 2054-2066.e6.
[92]
S. Kakuda, R.S. Haltiwanger. Deciphering the fringe-mediated Notch code: identification of activating and inhibiting sites allowing discrimination between ligands. Dev Cell, 40 (2) (2017), pp. 193-201.
[93]
M. Schneider, V. Kumar, L.U. Nordstrøm, L. Feng, H. Takeuchi, H. Hao, et al. Inhibition of Delta-induced Notch signaling using fucose analogs. Nat Chem Biol, 14 (1) (2018), pp. 65-71.
[94]
M. Acar, H. Jafar-Nejad, H. Takeuchi, A. Rajan, D. Ibrani, N.A. Rana, et al. Rumi is a CAP 10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell, 132 (2) (2008), pp. 247-258.
[95]
H. Takeuchi, R.C. Fernández-Valdivia, D.S. Caswell, A. Nita-Lazar, N.A. Rana, T.P. Garner, et al. Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase. Proc Natl Acad Sci USA, 108 (40) (2011), pp. 16600-16605.
[96]
D.J. Moloney, L.H. Shair, F.M. Lu, J. Xia, R. Locke, K.L. Matta, et al. Mammalian Notch 1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules*. J Biol Chem, 275 (13) (2000), pp. 9604-9611.
[97]
L. Shao, Y. Luo, D.J. Moloney, R.S. Haltiwanger. O-glycosylation of EGF repeats: identification and initial characterization of a UDP-glucose: protein O-glucosyltransferase. Glycobiology, 12 (11) (2002), pp. 763-770.
[98]
N.A. Rana, A. Nita-Lazar, H. Takeuchi, S. Kakuda, K.B. Luther, R.S. Haltiwanger. O-glucose trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. J Biol Chem, 286 (36) (2011), pp. 31623-31637.
[99]
Z. Li, M. Fischer, M. Satkunarajah, D. Zhou, S.G. Withers, J.M. Rini. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat Commun, 8 (1) (2017), p. 185.
[100]
D.B. Williamson, R.S. Haltiwanger. Identification, function, and biological relevance of POGLUT2 and POGLUT3. Biochem Soc Trans, 50 (2) (2022), pp. 1003-1012.
[101]
B.M. Harvey, N.A. Rana, H. Moss, J. Leonardi, H. Jafar-Nejad, R.S. Haltiwanger. Mapping sites of O-glycosylation and fringe elongation on Drosophila Notch. J Biol Chem, 291 (31) (2016), pp. 16348-16360.
[102]
T.V. Lee, M.K. Sethi, J. Leonardi, N.A. Rana, F.F.R. Buettner, R.S. Haltiwanger, et al. Negative regulation of Notch signaling by Xylose. PLoS Genet, 9 (6) (2013), e1003547.
[103]
R. Fernandez-Valdivia, H. Takeuchi, A. Samarghandi, M. Lopez, J. Leonardi, R.S. Haltiwanger, et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development, 138 (10) (2011), pp. 1925-1934.
[104]
J. Leonardi, R. Fernandez-Valdivia, Y.D. Li, A.A. Simcox, H. Jafar-Nejad. Multiple O-glucosylation sites on Notch function as a buffer against temperature-dependent loss of signaling. Development, 138 (16) (2011), pp. 3569-3578.
[105]
C.N. Perdigoto, F. Schweisguth, A.J. Bardin. Distinct levels of Notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development, 138 (21) (2011), pp. 4585-4595.
[106]
A. Pandey, N. Niknejad, H. Jafar-Nejad. Multifaceted regulation of Notch signaling by glycosylation. Glycobiology, 31 (2021), pp. 8-28.
[107]
T. Lieber, S. Kidd, M.W. Young. Kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev, 16 (2) (2002), pp. 209-221.
[108]
H. Jafar-Nejad, J. Leonardi, R. Fernandez-Valdivia. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology, 20 (8) (2010), pp. 931-949.
[109]
N. Ramkumar, B.M. Harvey, J.D. Lee, H.L. Alcorn, N.F. Silva-Gagliardi, C.J. McGlade, et al. Protein O-glucosyltransferase 1 (POGLUT1) promotes mouse gastrulation through modification of the apical polarity protein CRUMBS2. PLoS Genet, 11 (10) (2015), e1005551.
[110]
E. Servián-Morilla, H. Takeuchi, T.V. Lee, J. Clarimon, F. Mavillard, E. Area-Gómez, et al. A POGLUT 1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol Med, 8 (11) (2016), pp. 1289-1309.
[111]
E. Servián-Morilla, M. Cabrera-Serrano, K. Johnson, A. Pandey, A. Ito, E. Rivas, et al. POGLUT 1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern. Acta Neuropathol, 139 (3) (2020), pp. 565-582.
[112]
W. Ma, J. Du, Q. Chu, Y. Wang, L. Liu, M. Song, et al. hCLP 46 regulates U937 cell proliferation via Notch signaling pathway. Biochem Biophys Res Commun, 408 (1) (2011), pp. 84-88.
[113]
Q. Chu, L. Liu, W. Wang. Overexpression of hCLP46 enhances Notch activation and regulates cell proliferation in a cell type-dependent manner. Cell Prolif, 46 (3) (2013), pp. 254-262.
[114]
A. Matsuura, M. Ito, Y. Sakaidani, T. Kondo, K. Murakami, K. Furukawa, et al. O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J Biol Chem, 283 (51) (2008), pp. 35486-35495.
[115]
Y. Sakaidani, T. Nomura, A. Matsuura, M. Ito, E. Suzuki, K. Murakami, et al. O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat Commun, 2 (1) (2011), p. 583.
[116]
M. Ogawa, Y. Senoo, K. Ikeda, H. Takeuchi, T. Okajima. Structural divergence in O-GlcNAc glycans displayed on epidermal growth factor-like repeats of mammalian Notch1. Molecules, 23 (7) (2018), p. 1745.
[117]
M. Ogawa, T. Okajima. Structure and function of extracellular O-GlcNAc. Curr Opin Struct Biol, 56 (2019), pp. 72-77.
[118]
Y. Sakaidani, N. Ichiyanagi, C. Saito, T. Nomura, M. Ito, Y. Nishio, et al. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1. Biochem Biophys Res Commun, 419 (1) (2012), pp. 14-19.
[119]
R. Müller, A. Jenny, P. Stanley. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One, 8 (5) (2013), p. e62835.
[120]
S. Varshney, P. Stanley. Multiple roles for O-glycans in Notch signalling. FEBS Lett, 592 (23) (2018), pp. 3819-3834.
[121]
S. Sawaguchi, S. Varshney, M. Ogawa, Y. Sakaidani, H. Yagi, K. Takeshita, et al. O-GlcNAc on NOTCH 1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. eLife, 6 (2017), p. e24419.
[122]
V.M. Panin, L. Shao, L. Lei, D.J. Moloney, K.D. Irvine, R.S. Haltiwanger. Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem, 277 (33) (2002), pp. 29945-29952.
[123]
S.M. Thakurdas, M.F. Lopez, S. Kakuda, R. Fernandez-Valdivia, N. Zarrin-Khameh, R.S. Haltiwanger, et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology, 63 (2) (2016), pp. 550-565.
[124]
X. Sun, S. Artavanis-Tsakonas. The intracellular deletions of Delta and Serrate define dominant negative forms of the Drosophila Notch ligands. Development, 122 (8) (1996), pp. 2465-2474.
[125]
X. Sun, S. Artavanis-Tsakonas. Secreted forms of DELTA and SERRATE define antagonists of Notch signaling in Drosophila. Development, 124 (17) (1997), pp. 3439-3448.
[126]
C.A. Poodry. Shibire, a neurogenic mutant of Drosophila. Dev Biol, 138 (2) (1990), pp. 464-472.
[127]
L. Meloty-Kapella, B. Shergill, J. Kuon, E. Botvinick, G. Weinmaster. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev Cell, 22 (6) (2012), pp. 1299-1312.
[128]
R. Le Borgne, A. Bardin, F. Schweisguth. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development, 132 (8) (2005), pp. 1751-1762.
[129]
G.A. Deblandre, E.C. Lai, C. Kintner. Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Dev Cell, 1 (6) (2001), pp. 795-806.
[130]
M. Itoh, C.H. Kim, G. Palardy, T. Oda, Y.J. Jiang, D. Maust, et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell, 4 (1) (2003), pp. 67-82.
[131]
X. Xie, B. Cho, J.A. Fischer. Drosophila Epsin’s role in Notch ligand cells requires three Epsin protein functions: the lipid binding function of the ENTH domain, a single ubiquitin interaction motif, and a subset of the C-terminal protein binding modules. Dev Biol, 363 (2) (2012), pp. 399-412.
[132]
W. Wang, G. Struhl. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development, 131 (21) (2004), pp. 5367-5380.
[133]
W. Wang, G. Struhl. Distinct roles for mind bomb, neuralized and spsin in mediating DSL endocytosis and signaling in Drosophila. Development, 132 (12) (2005), pp. 2883-2894.
[134]
M. Okano, H. Matsuo, Y. Nishimura, K. Hozumi, S. Yoshioka, A. Tonoki, et al. Mib 1 modulates dynamin 2 recruitment via Snx18 to promote Dll1 endocytosis for efficient Notch signaling. Genes Cells, 21 (5) (2016), pp. 425-441.
[135]
L. Seugnet, P. Simpson, M. Haenlin. Requirement for dynamin during notch signaling in Drosophila neurogenesis. Dev Biol, 192 (2) (1997), pp. 585-598.
[136]
S.L. Windler, D. Bilder. Endocytic internalization routes required for Delta/Notch signaling. Curr Biol, 20 (6) (2010), pp. 538-543.
[137]
J.P. Couso, E. Knust, A.A. Martinez. Serrate and wingless cooperate to induce vestigial gene expression and wing formation in Drosophila. Curr Biol, 5 (12) (1995), pp. 1437-1448.
[138]
M. Glittenberg, C. Pitsouli, C. Garvey, C. Delidakis, S. Bray. Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. EMBO J, 25 (20) (2006), pp. 4697-4706.
[139]
G. Chapman, J.A. Major, K. Iyer, A.C. James, S.E. Pursglove, J.L.M. Moreau, et al. Notch 1 endocytosis is induced by ligand and is required for signal transduction. Biochim Biophys Acta, 1863 (1) (2016), pp. 166-177.
[140]
P. Chastagner, E. Rubinstein, C. Brou. Ligand-activated Notch undergoes DTX4-mediated ubiquitylation and bilateral endocytosis before ADAM10 processing. Sci Signal, 10 (483) (2017), eaag2989.
[141]
S.A. Mohamed, Z. Aherrahrou, H. Liptau, A.W. Erasmi, C. Hagemann, S. Wrobel, et al. Novel missense mutations (p. T596M and p. P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun, 345 (4) (2006), pp. 1460-1465.
[142]
S.H. McKellar, D.J. Tester, M. Yagubyan, R. Majumdar, M.J. Ackerman, T.M. Sundt. III. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg, 134 (2) (2007), pp. 290-296.
[143]
K.L. McBride, M.F. Riley, G.A. Zender, S.M. Fitzgerald-Butt, J.A. Towbin, J.W. Belmont, et al. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet, 17 (18) (2008), pp. 2886-2893.
[144]
J.L. Theis, S.C.L. Hrstka, J.M. Evans, M.M. O’Byrne, M. de Andrade, P.W. O’Leary, et al. Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome. Hum Genet, 134 (9) (2015), pp. 1003-1011.
[145]
N. Dargis, M. Lamontagne, N. Gaudreault, L. Sbarra, C. Henry, P. Pibarot, et al. Identification of gender-specific genetic variants in patients with bicuspid aortic valve. Am J Cardiol, 117 (3) (2016), pp. 420-426.
[146]
E. Girdauskas, L. Geist, K. Disha, I. Kazakbaev, T. Groß, S. Schulz, et al. Genetic abnormalities in bicuspid aortic valve root phenotype: preliminary results. Eur J Cardiothorac Surg, 52 (1) (2017), pp. 156-162.
[147]
L. Torres-Juan, Y. Rico, E. Fortuny, J. Pons, R. Ramos, F. Santos-Simarro, et al. NOTCH1 gene as a novel cause of thoracic aortic aneurysm in patients with tricuspid aortic valve: two cases reported. Int J Mol Sci, 24 (10) (2023), p. 8644.
[148]
A.B. Stittrich, A. Lehman, D.L. Bodian, J. Ashworth, Z. Zong, H. Li, et al. Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet, 95 (3) (2014), pp. 275-284.
[149]
L. Southgate, M. Sukalo, A.S.V. Karountzos, E.J. Taylor, C.S. Collinson, D. Ruddy, et al. Haploinsufficiency of the NOTCH 1 receptor as a cause of Adams-Oliver syndrome with variable cardiac anomalies. Circ Cardiovasc Genet, 8 (4) (2015), pp. 572-581.
[150]
J.A.N. Meester, M. Sukalo, K.C. Schröder, D. Schanze, G. Baynam, G. Borck, et al. Elucidating the genetic architecture of Adams-Oliver syndrome in a large European cohort. Hum Mutat, 39 (9) (2018), pp. 1246-1261.
[151]
M.A. Gilbert, R.C. Bauer, R. Rajagopalan, C.M. Grochowski, G. Chao, D. McEldrew, et al. Alagille syndrome mutation update: comprehensive overview of JAG1 and NOTCH2 mutation frequencies and insight into missense variant classification. Hum Mutat, 40 (12) (2019), pp. 2197-2220.
[152]
Kamath BM, Bauer RC, Loomes KM, Chao G, Gerfen J, Hutchinson A, et al. NOTCH2 mutations in Alagille syndrome. J Med Genet 2012;49:138-44.
[153]
Y. ShenTu, X. Mi, D. Tang, Y. Jiang, L. Gao, X. Ma, et al. Alagille syndrome caused by NOTCH2 mutation presented atypical pathological changes. Clin Chim Acta, 521 (2021), pp. 258-263.
[154]
M.S. Uddin, S.A. Fulayyih, F.F.A. Denaini, M.M.A. Hatlani. Pathogenic novel heterozygous variant c.1076c>T p. (Ser359Phe) chr1: 120512166 in NOTCH2 gene, type 2 alagille syndrome causing neonatal cholestasis: a case report. Am J Case Rep, 23 (2022), e935840.
[155]
Z.D. Li, K. Abuduxikuer, L. Wang, C.Z. Hao, J. Zhang, M.X. Wang, et al. Defining pathogenicity of NOTCH2 variants for diagnosis of Alagille syndrome type 2 using a large cohort of patients. Liver Int, 42 (8) (2022), pp. 1836-1848.
[156]
J. Li, H. Wu, S. Chen, J. Pang, H. Wang, X. Li, et al. Clinical and genetic characteristics of Alagille syndrome in adults. J Clin Transl Hepatol, 11 (2023), pp. 156-162.
[157]
A. Joutel, C. Corpechot, A. Ducros, K. Vahedi, H. Chabriat, P. Mouton, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature, 383 (6602) (1996), pp. 707-710.
[158]
K. Coupland, U. Lendahl, H. Karlström. Role of NOTCH3 mutations in the cerebral small vessel disease cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke, 49 (11) (2018), pp. 2793-2800.
[159]
M. Mukai, I. Mizuta, A. Watanabe-Hosomi, T. Koizumi, J. Matsuura, A. Hamano, et al. Genotype-phenotype correlations and effect of mutation location in Japanese CADASIL patients. J Hum Genet, 65 (8) (2020), pp. 637-646.
[160]
T. Mizuno, I. Mizuta, A. Watanabe-Hosomi, M. Mukai, T. Koizumi. Clinical and genetic aspects of CADASIL. Front Aging Neurosci, 12 (2020), p. 91.
[161]
C.A. Rodriguez, O.J.H. Fustes, C.B.T. Arteaga. A novel Notch 3 mutation (pathogenic variant c.1565G>C) in CADASIL. Neurologia, 37 (3) (2022), pp. 235-236.
[162]
W. Ni, Y. Zhang, L. Zhang, J.J. Xie, H.F. Li, Z.Y. Wu. Genetic spectrum of NOTCH3 and clinical phenotype of CADASIL patients in different populations. CNS Neurosci Ther, 28 (11) (2022), pp. 1779-1789.
[163]
J. Wei, G.P. Hemmings. The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet, 25 (4) (2000), pp. 376-377.
[164]
C.J. Cardinale, D. Li, L. Tian, J.J. Connolly, M.E. March, C. Hou, et al. Association of a rare NOTCH4 coding variant with systemic sclerosis: a family-based whole exome sequencing study. BMC Musculoskelet Disord, 17 (1) (2016), p. 462.
[165]
B. Fischer-Zirnsak, L. Segebrecht, M. Schubach, P. Charles, E. Alderman, K. Brown, et al. Haploinsufficiency of the Notch ligand DLL 1 causes variable neurodevelopmental disorders. Am J Hum Genet, 105 (3) (2019), pp. 631-639.
[166]
H. Chabriat, A. Joutel, M. Dichgans, E. Tournier-Lasserve, M.G. Bousser. Cadasil. Lancet Neurol, 8 (7) (2009), pp. 643-653.
[167]
H. Karlström, P. Beatus, K. Dannaeus, G. Chapman, U. Lendahl, J. Lundkvist. A CADASIL-mutated Notch 3 receptor exhibits impaired intracellular trafficking and maturation but normal ligand-induced signaling. Proc Natl Acad Sci USA, 99 (26) (2002), pp. 17119-17124.
[168]
T. Pippucci, A. Maresca, P. Magini, G. Cenacchi, V. Donadio, F. Palombo, et al. Homozygous NOTCH3 null mutation and impaired NOTCH 3 signaling in recessive early-onset arteriopathy and cavitating leukoencephalopathy. EMBO Mol Med, 7 (6) (2015), pp. 848-858.
[169]
C. Klein, S. Schreyer, F.E. Kohrs, P. Elhamoury, A. Pfeffer, T. Munder, et al. Stimulation of adult hippocampal neurogenesis by physical exercise and enriched environment is disturbed in a CADASIL mouse model. Sci Rep, 7 (1) (2017), p. 45372.
[170]
J.W. Rutten, B.J. Van Eijsden, M. Duering, E. Jouvent, C. Opherk, L. Pantoni, et al. The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFR 1-6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFR 7-34 pathogenic variant. Genet Med, 21 (3) (2019), pp. 676-682.
[171]
S.A. Jensen, S. Iqbal, A. Bulsiewicz, P.A. Handford. A microfibril assembly assay identifies different mechanisms of dominance underlying Marfan syndrome, stiff skin syndrome and acromelic dysplasias. Hum Mol Genet, 24 (15) (2015), pp. 4454-4463.
[172]
V. Garg, A.N. Muth, J.F. Ransom, M.K. Schluterman, R. Barnes, I.N. King, et al. Mutations in NOTCH1 cause aortic valve disease. Nature, 437 (7056) (2005), pp. 270-274.
[173]
O.J. Harrison, C. Torrens, K. Salhiyyah, A. Modi, N. Moorjani, P.A. Townsend, et al. Defective NOTCH signalling drives smooth muscle cell death and differentiation in bicuspid aortic valve aortopathy. Eur J Cardiothorac Surg, 56 (1) (2019), pp. 117-125.
[174]
S. Sciacca, M. Pilato, G. Mazzoccoli, V. Pazienza, M. Vinciguerra. Anti-correlation between longevity gene SirT1 and Notch signaling in ascending aorta biopsies from patients with bicuspid aortic valve disease. Heart Vessels, 28 (2) (2013), pp. 268-275.
[175]
L. Li, I.D. Krantz, Y. Deng, A. Genin, A.B. Banta, C.C. Collins, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet, 16 (3) (1997), pp. 243-251.
[176]
B.M. Kamath, N.B. Spinner, N.D. Rosenblum. Renal involvement and the role of Notch signalling in Alagille syndrome. Nat Rev Nephrol, 9 (7) (2013), pp. 409-418.
[177]
J. Birtel, T. Eisenberger, M. Gliem, P.L. Müller, P. Herrmann, C. Betz, et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep, 8 (1) (2018), p. 4824.
[178]
R. Fischetto, V.V. Palmieri, M.E. Tripaldi, A. Gaeta, A. Michelucci, M. Delvecchio, et al. Alagille syndrome: a novel mutation in JAG1 gene. Front Pediatr, 7 (2019), p. 199.
[179]
L. Fabris, R. Fiorotto, C. Spirli, M. Cadamuro, V. Mariotti, M.J. Perugorria, et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol, 16 (8) (2019), pp. 497-511.
[180]
S. Hankeova, N. Van Hul, J. Laznovsky, E. Verboven, K. Mangold, N. Hensens, et al. Sex differences and risk factors for bleeding in Alagille syndrome. EMBO Mol Med, 14 (12) (2022), p. e15809.
[181]
S. Hankeova, J. Salplachta, T. Zikmund, M. Kavkova, N. Van Hul, A. Brinek, et al. DUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for Alagille syndrome. eLife, 10 (2021), p. e60916.
[182]
J.A.N. Meester, A. Verstraeten, M. Alaerts, D. Schepers, L. Van Laer, B.L. Loeys. Overlapping but distinct roles for NOTCH receptors in human cardiovascular disease. Clin Genet, 95 (1) (2019), pp. 85-94.
[183]
L. Fabris, M. Cadamuro, M. Guido, C. Spirli, R. Fiorotto, M. Colledan, et al. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for Notch signaling. Am J Pathol, 171 (2) (2007), pp. 641-653.
[184]
T. Kohsaka, Z. Yuan, S. Guo, M. Tagawa, A. Nakamura, M. Nakano, et al. The significance of human Jagged 1 mutations detected in severe cases of extrahepatic biliary atresia. Hepatology, 36 (4) (2002), pp. 904-912.
[185]
C. Guarnaccia, S. Dhir, A. Pintar, S. Pongor. The tetralogy of Fallot-associated G274D mutation impairs folding of the second epidermal growth factor repeat in Jagged-1. FEBS J, 276 (21) (2009), pp. 6247-6257.
[186]
Z.A. Eldadah, A. Hamosh, N.J. Biery, R.A. Montgomery, M. Duke, R. Elkins, et al. Familial tetralogy of Fallot caused by mutation in the Jagged1 gene. Hum Mol Genet, 10 (2) (2001), pp. 163-169.
[187]
R.C. Bauer, A.O. Laney, R. Smith, J. Gerfen, J.J.D. Morrissette, S. Woyciechowski, et al. Jagged 1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat, 31 (5) (2010), pp. 594-601.
[188]
J.M. Sullivan, W.W. Motley, J.O. Johnson, W.H. Aisenberg, K.L. Marshall, K.E. Barwick, et al. Dominant mutations of the Notch ligand Jagged 1 cause peripheral neuropathy. J Clin Invest, 130 (3) (2020), pp. 1506-1512.
[189]
S.S.J. Lee, V. Knott, J. Jovanović, K. Harlos, J.M. Grimes, L. Choulier, et al. Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure, 12 (4) (2004), pp. 717-729.
[190]
S. Coppens, A.M. Barnard, S. Puusepp, S. Pajusalu, K. Õunap, D. Vargas-Franco, et al. A form of muscular dystrophy associated with pathogenic variants in JAG2. Am J Hum Genet, 108 (5) (2021), pp. 840-856.
[191]
D.B. Sparrow, G. Chapman, M.A. Wouters, N.V. Whittock, S. Ellard, D. Fatkin, et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet, 78 (1) (2006), pp. 28-37.
[192]
N. Otomo, S. Mizumoto, H.F. Lu, K. Takeda, B. Campos-Xavier, L. Mittaz-Crettol, et al. Identification of novel LFNG mutations in spondylocostal dysostosis. J Hum Genet, 64 (3) (2019), pp. 261-264.
[193]
M.P. Bulman, K. Kusumi, T.M. Frayling, C. McKeown, C. Garrett, E.S. Lander, et al. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet, 24 (4) (2000), pp. 438-441.
[194]
F.H. Adams, C.P. Oliver. Hereditary deformities in man. J Hered, 36 (1) (1945), pp. 3-7.
[195]
J.A.N. Meester, L. Southgate, A.B. Stittrich, H. Venselaar, S.J.A. Beekmans, N. Den Hollander, et al. Heterozygous loss-of-function mutations in DLL 4 cause Adams-Oliver syndrome. Am J Hum Genet, 97 (3) (2015), pp. 475-482.
[196]
M. Nagasaka, M. Taniguchi-Ikeda, H. Inagaki, Y. Ouchi, D. Kurokawa, K. Yamana, et al. Novel missense mutation in DLL4 in a Japanese sporadic case of Adams-Oliver syndrome. J Hum Genet, 62 (9) (2017), pp. 851-855.
[197]
K. Rojnueangnit, T. Phawan, T. Khetkham, W. Techasatid, B. Sirichongkolthong. A novel DLL4 mutation in Adams-Oliver syndrome with absence of the right pulmonary artery in newborn. Am J Med Genet A, 188 (2) (2022), pp. 658-664.
[198]
M. Umair, M. Younus, S. Shafiq, A. Nayab, M. Alfadhel. Clinical genetics of spondylocostal dysostosis: a mini review. Front Genet, 13 (2022), 996364.
[199]
K. Kusumi, M.S. Mimoto, K.L. Covello, R.S.P. Beddington, R. Krumlauf, S.L. Dunwoodie. Dll 3 pudgy mutation differentially disrupts dynamic expression of somite genes. Genesis, 39 (2) (2004), pp. 115-121.
[200]
M.Z. Mehboob, M. Lang. Structure, function, and pathology of protein O-glucosyltransferases. Cell Death Dis, 12 (1) (2021), p. 71.
[201]
C. Stephan, M. Kurban, O. Abbas. Dowling-Degos disease: a review. Int J Dermatol, 60 (8) (2021), pp. 944-950.
[202]
F. Buket Basmanav, A.M. Oprisoreanu, S.M. Pasternack, H. Thiele, G. Fritz, J. Wenzel, et al. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. Am J Hum Genet, 91 (1) (2014), pp. 135-143.
[203]
B.J. McMillan, B. Zimmerman, E.D. Egan, M. Lofgren, X. Xu, A. Hesser, et al. Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations. Glycobiology, 27 (8) (2017), pp. 777-786.
[204]
M. Li, R. Cheng, J. Liang, H. Yan, H. Zhang, L. Yang, et al. Mutations in POFUT1, encoding protein O-fucosyltransferase 1, cause generalized Dowling-Degos disease. Am J Hum Genet, 92 (6) (2013), pp. 895-903.
[205]
R. Shaheen, M. Aglan, K. Keppler-Noreuil, E. Faqeih, S. Ansari, K. Horton, et al. Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams-Oliver syndrome. Am J Hum Genet, 92 (4) (2013), pp. 598-604.
[206]
A.P. Weng, A.A. Ferrando, W. Lee, J.P. Morris IV, L.B. Silverman, C. Sanchez-Irizarry, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306 (5694) (2004), pp. 269-271.
[207]
X. Xu, S.H. Choi, T. Hu, K. Tiyanont, R. Habets, A.J. Groot, et al. Insights into autoregulation of Notch 3 from structural and functional studies of its negative regulatory region. Structure, 23 (7) (2015), pp. 1227-1235.
[208]
P. Van Vlierberghe, A. Ambesi-Impiombato, A. Perez-Garcia, J.E. Haydu, I. Rigo, M. Hadler, et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med, 208 (13) (2011), pp. 2571-2579.
[209]
J. Zhang, L. Ding, L. Holmfeldt, G. Wu, S.L. Heatley, D. Payne-Turner, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 481 (7380) (2012), pp. 157-163.
[210]
M. Neumann, S. Heesch, C. Schlee, S. Schwartz, N. Gökbuget, D. Hoelzer, et al. Whole-exome sequencing in adult ETP—all reveals a high rate of DNMT3A mutations. Blood, 121 (23) (2013), pp. 4749-4752.
[211]
D. Shimizu, T. Taki, A. Utsunomiya, H. Nakagawa, K. Nomura, Y. Matsumoto, et al. Detection of NOTCH1 mutations in adult T-cell leukemia/lymphoma and peripheral T-cell lymphoma. Int J Hematol, 85 (3) (2007), pp. 212-218.
[212]
J. Pancewicz, J.M. Taylor, A. Datta, H.H. Baydoun, T.A. Waldmann, O. Hermine, et al. Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia. Proc Natl Acad Sci USA, 107 (38) (2010), pp. 16619-16624.
[213]
P. Sportoletti, S. Baldoni, L. Cavalli, B. Del Papa, E. Bonifacio, R. Ciurnelli, et al. NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. Br J Haematol, 151 (4) (2010), pp. 404-406.
[214]
M. Di Ianni, S. Baldoni, E. Rosati, R. Ciurnelli, L. Cavalli, M.F. Martelli, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br J Haematol, 146 (6) (2009), pp. 689-691.
[215]
X.S. Puente, S. Beà, R. Valdés-Mas, N. Villamor, J. Gutiérrez-Abril, J.I. Martín-Subero, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature, 526 (7574) (2015), pp. 519-524.
[216]
X.S. Puente, M. Pinyol, V. Quesada, L. Conde, G.R. Ordóñez, N. Villamor, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 475 (7354) (2011), pp. 101-105.
[217]
R. Kridel, B. Meissner, S. Rogic, M. Boyle, A. Telenius, B. Woolcock, et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood, 119 (9) (2012), pp. 1963-1971.
[218]
S. Beà, R. Valdés-Mas, A. Navarro, I. Salaverria, D. Martín-Garcia, P. Jares, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci USA, 110 (45) (2013), pp. 18250-18255.
[219]
M.J. Kiel, T. Velusamy, B.L. Betz, L. Zhao, H.G. Weigelin, M.Y. Chiang, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med, 209 (9) (2012), pp. 1553-1565.
[220]
D. Rossi, V. Trifonov, M. Fangazio, A. Bruscaggin, S. Rasi, V. Spina, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med, 209 (9) (2012), pp. 1537-1551.
[221]
G. Trøen, I. Wlodarska, A. Warsame, S. Hernández Llodrà, C. De Wolf-Peeters, J. Delabie. NOTCH2 mutations in marginal zone lymphoma. Haematologica, 93 (7) (2008), pp. 1107-1109.
[222]
D.R. Robinson, S. Kalyana-Sundaram, Y.M. Wu, S. Shankar, X. Cao, B. Ateeq, et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med, 17 (12) (2011), pp. 1646-1651.
[223]
A. Stoeck, S. Lejnine, A. Truong, L. Pan, H. Wang, C. Zang, et al. Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discov, 4 (10) (2014), pp. 1154-1167.
[224]
A.S. Ho, K. Kannan, D.M. Roy, L.G.T. Morris, I. Ganly, N. Katabi, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet, 45 (7) (2013), pp. 791-798.
[225]
P.J. Stephens, H.R. Davies, Y. Mitani, P. Van Loo, A. Shlien, P.S. Tarpey, et al. Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest, 123 (7) (2013), pp. 2965-2968.
[226]
J.M. Mosquera, A. Sboner, L. Zhang, C.L. Chen, Y.S. Sung, H.W. Chen, et al. Novel MIR143-NOTCH fusions in benign and malignant glomus tumors. Genes Chromosomes Cancer, 52 (11) (2013), pp. 1075-1087.
[227]
N. Agrawal, M.J. Frederick, C.R. Pickering, C. Bettegowda, K. Chang, R.J. Li, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333 (6046) (2011), pp. 1154-1157.
[228]
N.J. Wang, Z. Sanborn, K.L. Arnett, L.J. Bayston, W. Liao, C.M. Proby, et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci USA, 108 (43) (2011), pp. 17761-17766.
[229]
S. Durinck, C. Ho, N.J. Wang, W. Liao, L.R. Jakkula, E.A. Collisson, et al. Temporal dissection of tumorigenesis in primary cancers. Cancer Discov, 1 (2) (2011), pp. 137-143.
[230]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489 (7417) (2012), pp. 519-525.
[231]
T. Rampias, P. Vgenopoulou, M. Avgeris, A. Polyzos, K. Stravodimos, C. Valavanis, et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med, 20 (10) (2014), pp. 1199-1205.
[232]
J. George, J.S. Lim, S.J. Jang, Y. Cun, L. Ozretić, G. Kong, et al. Comprehensive genomic profiles of small cell lung cancer. Nature, 524 (7563) (2015), pp. 47-53.
[233]
Y. Song, L. Li, Y. Ou, Z. Gao, E. Li, X. Li, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature, 509 (7498) (2014), pp. 91-95.
[234]
D.J. Brat, R.G.W. Verhaak, K.D. Aldape, W.K.A. Yung, S.R. Salama, L.A.D. Cooper, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med, 372 (26) (2015), pp. 2481-2498.
[235]
A. Klinakis, C. Lobry, O. Abdel-Wahab, P. Oh, H. Haeno, S. Buonamici, et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature, 473 (7346) (2011), pp. 230-233.
[236]
J.C. Aster, W.S. Pear, S.C. Blacklow. The varied roles of Notch in cancer. Annu Rev Pathol, 12 (1) (2017), pp. 245-275.
[237]
P. Bernasconi-Elias, T. Hu, D. Jenkins, B. Firestone, S. Gans, E. Kurth, et al. Characterization of activating mutations of NOTCH3 in T cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH 3 inhibitory antibodies. Oncogene, 35 (47) (2016), pp. 6077-6086.
[238]
F. Bonfiglio, A. Bruscaggin, F. Guidetti, L. Terzi di Bergamo, M. Faderl, V. Spina, et al. Genetic and phenotypic attributes of splenic marginal zone lymphoma. Blood, 139 (5) (2022), pp. 732-747.
[239]
J.H. Choi, J.T. Park, B. Davidson, P.J. Morin, I.M. Shih, T.L. Wang. Jagged-1 and Notch3 Juxtacrine loop regulates ovarian tumor growth and adhesion. Cancer Res, 68 (14) (2008), pp. 5716-5723.
[240]
J. Gao, J. Liu, D. Fan, H. Xu, Y. Xiong, Y. Wang, et al. Up-regulated expression of Notch1 and Jagged 1 in human colon adenocarcinoma. Pathol Biol, 59 (6) (2011), pp. 298-302.
[241]
D. Guo, J. Ye, L. Li, J. Dai, D. Ma, C. Ji. Down-regulation of Notch-1 increases co-cultured Jurkat cell sensitivity to chemotherapy. Leuk Lymphoma, 50 (2) (2009), pp. 270-278.
[242]
A.M. Jubb, L. Browning, L. Campo, H. Turley, G. Steers, G. Thurston, et al. Expression of vascular Notch ligands Delta-like 4 and Jagged-1 in glioblastoma. Histopathology, 60 (5) (2012), pp. 740-747.
[243]
E.J. Kim, S.O. Kim, X. Jin, S.W. Ham, J. Kim, J.B. Park, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol, 36 (4) (2015), pp. 2921-2928.
[244]
M. Reedijk, S. Odorcic, L. Chang, H. Zhang, N. Miller, D.R. McCready, et al. High-level coexpression of JAG1 and NOTCH 1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res, 65 (18) (2005), pp. 8530-8537.
[245]
S. Santagata, F. Demichelis, A. Riva, S. Varambally, M.D. Hofer, J.L. Kutok, et al. JAGGED 1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res, 64 (19) (2004), pp. 6854-6857.
[246]
T.M. Strati, V. Kotoula, I. Kostopoulos, K. Manousou, C. Papadimitriou, G. Lazaridis, et al. Prognostic subcellular Notch2, Notch3 and Jagged 1 localization patterns in early triple-negative breast cancer. Anticancer Res, 37 (5) (2017), pp. 2323-2334.
[247]
M. Sugiyama, E. Oki, Y. Nakaji, S. Tsutsumi, N. Ono, R. Nakanishi, et al. High expression of the Notch ligand Jagged-1 is associated with poor prognosis after surgery for colorectal cancer. Cancer Sci, 107 (11) (2016), pp. 1705-1716.
[248]
V. Vaish, J. Kim, M. Shim. Jagged-2 (JAG2) enhances tumorigenicity and chemoresistance of colorectal cancer cells. Oncotarget, 8 (32) (2017), pp. 53262-53275.
[249]
B. Westhoff, I.N. Colaluca, G. D’Ario, M. Donzelli, D. Tosoni, S. Volorio, et al. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA, 106 (52) (2009), pp. 22293-22298.
[250]
X. Yuan, H. Wu, H. Xu, N. Han, Q. Chu, S. Yu, et al. Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep, 5 (1) (2015), p. 10338.
[251]
C.G. Zheng, R. Chen, J.B. Xie, C.B. Liu, Z. Jin, C. Jin. Immunohistochemical expression of Notch1, Jagged1, NF-κB and MMP-9 in colorectal cancer patients and the relationship to clinicopathological parameters. Cancer Biomark, 15 (6) (2015), pp. 889-897.
[252]
C. Zhu, Y.J. Ho, M.A. Salomao, D.H. Dapito, A. Bartolome, R.F. Schwabe, et al. Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features. J Hepatol, 74 (3) (2021), pp. 613-626.
[253]
J.S. Lim, A. Ibaseta, M.M. Fischer, B. Cancilla, G. O’Young, S. Cristea, et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature, 545 (7654) (2017), pp. 360-364.
[254]
L.W. Ellisen, J. Bird, D.C. West, A.L. Soreng, T.C. Reynolds, S.D. Smith, et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 66 (4) (1991), pp. 649-661.
[255]
M.J. Malecki, C. Sanchez-Irizarry, J.L. Mitchell, G. Histen, M.L. Xu, J.C. Aster, et al. Leukemia-associated mutations within the NOTCH 1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol, 26 (12) (2006), pp. 4642-4651.
[256]
R. Ferrarotto, Y. Mitani, L. Diao, I. Guijarro, J. Wang, P. Zweidler-McKay, et al. Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J Clin Oncol, 35 (3) (2017), pp. 352-360.
[257]
M.D. Ianni, S. Baldoni, E. Rosati, R. Ciurnelli, L. Cavalli, M.F. Martelli, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br J Haematol, 146 (6) (2009), pp. 689-691.
[258]
P.S. Hammerman, D. Voet, M.S. Lawrence, D. Voet, R. Jing, K. Cibulskis, et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489 (7417) (2012), pp. 519-525.
[259]
N. Stransky, A.M. Egloff, A.D. Tward, A.D. Kostic, K. Cibulskis, A. Sivachenko, et al. The mutational landscape of head and neck squamous cell carcinoma. Science, 333 (6046) (2011), pp. 1157-1160.
[260]
M.P. Alcolea, P. Greulich, A. Wabik, J. Frede, B.D. Simons, P.H. Jones. Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change. Nat Cell Biol, 16 (6) (2014), p. 615.
[261]
W. Sawangarun, M. Mandasari, J. Aida, K. Morita, K. Kayamori, T. Ikeda, et al. Loss of Notch 1 predisposes oro-esophageal epithelium to tumorigenesis. Exp Cell Res, 372 (2) (2018), pp. 129-140.
[262]
H. Boukhatmi, T. Martins, Z. Pillidge, T. Kamenova, S. Bray. Notch mediates inter-tissue communication to promote tumorigenesis. Curr Biol, 30 (10) (2020), pp. 1809-1820.e4.
[263]
C.S. Nowell, F. Radtke. Notch as a tumour suppressor. Nat Rev Cancer, 17 (3) (2017), pp. 145-159.
[264]
I. Martincorena, J.C. Fowler, A. Wabik, A.R.J. Lawson, F. Abascal, M.W.J. Hall, et al. Somatic mutant clones colonize the human esophagus with age. Science, 362 (6417) (2018), pp. 911-917.
[265]
E. Abby, S.C. Dentro, M.W.J. Hall, J.C. Fowler, S.H. Ong, R. Sood, et al. Notch1 mutations drive clonal expansion in normal esophageal epithelium but impair tumor growth. Nat Gene, 55 (2) (2023), pp. 232-245.
[266]
S. Zhang, W.C. Chung, G. Wu, S.E. Egan, L. Miele, K. Xu. Manic fringe promotes a claudin-low breast cancer phenotype through Notch-mediated PIK3CG induction. Cancer Res, 75 (10) (2015), pp. 1936-1943.
[267]
S. Wang, M. Itoh, E. Shiratori, M. Ohtaka, S. Tohda. NOTCH activation promotes glycosyltransferase expression in human myeloid leukemia cells. Hematol Rep, 10 (3) (2018), 7576.
[268]
C. Yang, J.F. Hu, Q. Zhan, Z.W. Wang, G. Li, J.J. Pan, et al. SHCBP 1 interacting with EOGT enhances O-GlcNAcylation of NOTCH1 and promotes the development of pancreatic cancer. Genomics, 113 (2) (2021), pp. 827-842.
[269]
M.G. Libisch, M. Casás, M.L. Chiribao, P. Moreno, A. Cayota, E. Osinaga, et al. GALNT 11 as a new molecular marker in chronic lymphocytic leukemia. Gene, 533 (1) (2014), pp. 270-279.
[270]
R. Barua, K. Mizuno, Y. Tashima, M. Ogawa, H. Takeuchi, A. Taguchi, et al. Bioinformatics and functional analyses implicate potential roles for EOGT and L-fringe in pancreatic cancers. Molecules, 26 (4) (2021), p. 882.
[271]
Y. Wang, N. Chang, T. Zhang, H. Liu, W. Ma, Q. Chu, et al. Overexpression of human CAP10-like protein 46KD in T-acute lymphoblastic leukemia and acute myelogenous leukemia. Genet Test Mol Biomarkers, 14 (1) (2010), pp. 127-133.
[272]
K. Xu, J. Usary, P.C. Kousis, A. Prat, D.Y. Wang, J.R. Adams, et al. Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like breast cancer. Cancer Cell, 21 (5) (2012), pp. 626-641.
[273]
R.A. Kroes, G. Dawson, J.R. Moskal. Focused microarray analysis of glyco-gene expression in human glioblastomas. J Neurochem, 103 (Suppl 1) (2007), pp. 14-24.
[274]
H. Larose, N. Prokoph, J.D. Matthews, M. Schlederer, S. Högler, A.F. Alsulami, et al. Whole exome sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target. Haematologica, 106 (6) (2021), pp. 1693-1704.
[275]
S. Majumder, J.S. Crabtree, T.E. Golde, L.M. Minter, B.A. Osborne, L. Miele. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov, 20 (2) (2021), pp. 125-144.
[276]
E.R. Andersson, U. Lendahl. Therapeutic modulation of Notch signalling—are we there yet?. Nat Rev Drug Discov, 13 (5) (2014), pp. 357-378.
[277]
J. Ridgway, G. Zhang, Y. Wu, S. Stawicki, W.C. Liang, Y. Chanthery, et al. Inhibition of Dll 4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444 (7122) (2006), pp. 1083-1087.
[278]
I. Noguera-Troise, C. Daly, N.J. Papadopoulos, S. Coetzee, P. Boland, N.W. Gale, et al. Blockade of Dll 4 inhibits tumour growth by promoting non-productive angiogenesis. Nature, 444 (7122) (2006), pp. 1032-1037.
[279]
M. Masiero, D. Li, P. Whiteman, C. Bentley, J. Greig, T. Hassanali, et al. Development of therapeutic anti-JAGGED 1 antibodies for cancer therapy. Mol Cancer Ther, 18 (11) (2019), pp. 2030-2042.
[280]
L.S. Rosen, R. Wesolowski, R. Baffa, K.H. Liao, S.Y. Hua, B.L. Gibson, et al. A phase I, dose-escalation study of PF-06650808, an anti-Notch3 antibody-drug conjugate, in patients with breast cancer and other advanced solid tumors. Invest New Drugs, 38 (1) (2020), pp. 120-130.
[281]
R. Lehal, J. Zaric, M. Vigolo, C. Urech, V. Frismantas, N. Zangger, et al. Pharmacological disruption of the Notch transcription factor complex. Proc Natl Acad Sci USA, 117 (28) (2020), pp. 16292-16301.
[282]
E. Lopez Miranda, A. Stathis, D. Hess, F. Racca, D. Quon, J. Rodon, et al. Phase 1 study of CB-103, a novel first-in-class inhibitor of the CSL-NICD gene transcription factor complex in human cancers. J Clin Oncol 39 (15_suppl) (2021), p. 3020.
[283]
A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, C.T. Supuran. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov, 20 (3) (2021), pp. 200-216.
[284]
Y. Cao, L. Yu, G. Dai, S. Zhang, Z. Zhang, T. Gao, et al. Cinobufagin induces apoptosis of osteosarcoma cells through inactivation of Notch signaling. Eur J Pharmacol, 794 (2017), pp. 77-84.
[285]
M.S. Kang, S.H. Baek, Y.S. Chun, A.Z. Moore, N. Landman, D. Berman, et al. Modulation of lipid kinase PI4KIIα activity and lipid raft association of presenilin 1 underlies γ-secretase inhibition by ginsenoside (20S)-Rg3. J Biol Chem, 288 (29) (2013), pp. 20868-20882.
[286]
B. Zhou, Z. Yan, R. Liu, P. Shi, S. Qian, X. Qu, et al. Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg 3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology, 280 (2) (2016), pp. 630-639.
AI Summary AI Mindmap
PDF(3818 KB)

Accesses

Citations

Detail

Sections
Recommended

/