Targeted Therapy of Central Nervous System Acute Lymphoblastic Leukemia with an Integrin α6-Targeted Self-Assembling Proapoptotic Nanopeptide

Jia-Cong Ye, Wan-Qiong Li, Mei-Ling Chen, Qian-Kun Shi, Hua Wang, Xin-Ling Li, Ying-He Li, Jie Yang, Qiao-Li Wang, Fang Hu, Yan-Feng Gao, Shu-Wen Liu, Mu-Sheng Zeng, Guo-Kai Feng

Engineering ›› 2024, Vol. 35 ›› Issue (4) : 226-240.

PDF(4899 KB)
PDF(4899 KB)
Engineering ›› 2024, Vol. 35 ›› Issue (4) : 226-240. DOI: 10.1016/j.eng.2023.11.012
Research
Article

Targeted Therapy of Central Nervous System Acute Lymphoblastic Leukemia with an Integrin α6-Targeted Self-Assembling Proapoptotic Nanopeptide

Author information +
History +

Abstract

There is currently no effective targeted therapeutic strategy for the treatment of central nervous system acute lymphoblastic leukemia (CNS-ALL). Integrin α6 is considered a potential target for CNS-ALL diagnosis and therapy because of its role in promoting CNS-ALL disease progression. The targeted peptide D(RWYD) (abbreviated RD), with nanomolar affinity to integrin α6 was identified by peptide scanning techniques such as alanine scanning, truncation, and D-substitution. Herein, we developed a therapeutic nanoparticle based on the integrin α6-targeted peptide for treating CNS-ALL. The self-assembled proapoptotic nanopeptide D(RWYD)-D(KLAKLAK)2-GD(FFY) (abbreviated RD-KLA-Gffy) contains the integrin α6-targeted peptide RD, the well-known proapoptotic peptide D(KLAKLAK)2 (abbreviated KLA), and the self-assembling tetrapeptide GD(FFY) (abbreviated Gffy). The functional mechanism of RD-KLA-Gffy is clarified using different experiments. Our results demonstrate that RD-KLA-Gffy is highly enriched in CNS-ALL lesions and induces tumor cell apoptosis, thus reducing CNS-ALL disease burden and prolonging the survival of CNS-ALL mice without obvious toxicity. Moreover, the combined use of RD-KLA-Gffy and methotrexate (MTX) shows a potent antitumor effect in treating CNS-ALL, indicating that RD-KLA-Gffy plays an important role in suppressing CNS-ALL progression either as a single agent or in combination with MTX, which shows promise for application in CNS-ALL therapy.

Graphical abstract

Keywords

Central nervous system acute lymphoblastic leukemia / Integrin α6 / Targeted peptide / Proapoptotic / Nanopeptide

Cite this article

Download citation ▾
Jia-Cong Ye, Wan-Qiong Li, Mei-Ling Chen, Qian-Kun Shi, Hua Wang, Xin-Ling Li, Ying-He Li, Jie Yang, Qiao-Li Wang, Fang Hu, Yan-Feng Gao, Shu-Wen Liu, Mu-Sheng Zeng, Guo-Kai Feng. Targeted Therapy of Central Nervous System Acute Lymphoblastic Leukemia with an Integrin α6-Targeted Self-Assembling Proapoptotic Nanopeptide. Engineering, 2024, 35(4): 226‒240 https://doi.org/10.1016/j.eng.2023.11.012

References

[1]
S. Krishnan, R. Wade, A.V. Moorman, C. Mitchell, S.E. Kinsey, T.O.B. Eden, et al. Temporal changes in the incidence and pattern of central nervous system relapses in children with acute lymphoblastic leukaemia treated on four consecutive Medical Research Council trials, 1985-2001. Leukemia, 24 (2) (2010), pp. 450-459.
[2]
S. Jeha, D. Pei, J. Choi, C. Cheng, J.T. Sandlund, E. Coustan-Smith, et al. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total Therapy Study 16. J Clin Oncol, 37 (35) (2019), pp. 3377-3391.
[3]
D.M. Byrnes, F. Vargas, C. Dermarkarian, R. Kahn, D. Kwon, J. Hurley, et al. Complications of intrathecal chemotherapy in adults: single-institution experience in 109 consecutive patients. J Oncol, 2019 (2019), p. 4047617.
[4]
M. Thastrup, A. Duguid, C. Mirian, K. Schmiegelow, C. Halsey. Central nervous system involvement in childhood acute lymphoblastic leukemia: challenges and solutions. Leukemia, 36 (12) (2022), pp. 2751-2768.
[5]
A.J. Veerman, W.A. Kamps, H. van den Berg, E. van den Berg, J.P.M. Bökkerink, M.C.A. Bruin, et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997-2004). Lancet Oncol, 10 (10) (2009), pp. 957-966.
[6]
N.S. Iyer, L.M. Balsamo, M.B. Bracken, N.S. Kadan-Lottick. Chemotherapy-only treatment effects on long-term neurocognitive functioning in childhood ALL survivors: a review and meta-analysis. Blood, 126 (3) (2015), pp. 346-353.
[7]
L.M. Jacola, K.R. Krull, C.H. Pui, D. Pei, C. Cheng, W.E. Reddick, et al. Longitudinal assessment of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia treated on a contemporary chemotherapy protocol. J Clin Oncol, 34 (11) (2016), pp. 1239-1247.
[8]
C. Le Jeune, X. Thomas. Potential for bispecific T-cell engagers: role of blinatumomab in acute lymphoblastic leukemia. Drug Des Devel Ther, 10 (2016), pp. 757-765.
[9]
S.L. Maude, N. Frey, P.A. Shaw, R. Aplenc, D.M. Barrett, N.J. Bunin, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 371 (16) (2014), pp. 1507-1517.
[10]
D.M. Schewe, A. Alsadeq, C. Sattler, L. Lenk, F. Vogiatzi, G. Cario, et al. An Fc-engineered CD 19 antibody eradicates MRD in patient-derived MLL-rearranged acute lymphoblastic leukemia xenografts. Blood, 130 (13) (2017), pp. 1543-1552.
[11]
F. Vogiatzi, D. Winterberg, L. Lenk, S. Buchmann, G. Cario, M. Schrappe, et al. Daratumumab eradicates minimal residual disease in a preclinical model of pediatric T-cell acute lymphoblastic leukemia. Blood, 134 (8) (2019), pp. 713-716.
[12]
A. Alsadeq, L. Lenk, A. Vadakumchery, A. Cousins, C. Vokuhl, A. Khadour, et al. IL7R is associated with CNS infiltration and relapse in pediatric B-cell precursor acute lymphoblastic leukemia. Blood, 132 (15) (2018), pp. 1614-1617.
[13]
H. Dai, W. Zhang, X. Li, Q. Han, Y. Guo, Y. Zhang, et al. Tolerance and efficacy of autologous or donor-derived T cells expressing CD 19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia. Oncoimmunology, 4 (11) (2015), p. e1027469.
[14]
E. Jacoby, S. Ghorashian, B. Vormoor, B. de Moerloose, N. Bodmer, O. Molostova, et al. CD 19 CAR T-cells for pediatric relapsed acute lymphoblastic leukemia with active CNS involvement: a retrospective international study. Leukemia, 36 (6) (2022), pp. 1525-1532.
[15]
S.K. Tasian, R.A. Gardner. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Ther Adv Hematol, 6 (5) (2015), pp. 228-241.
[16]
N. De Franceschi, H. Hamidi, J. Alanko, P. Sahgal, J. Ivaska. Integrin traffic—the update. J Cell Sci, 128 (5) (2015), pp. 839-852.
[17]
P.H. Krebsbach, L.G. Villa-Diaz. The role of integrin α6 (CD49f) in stem cells: more than a conserved biomarker. Stem Cells Dev, 26 (15) (2017), pp. 1090-1099.
[18]
C.G. Gahmberg, M. Grönholm, S. Madhavan, F. Jahan, E. Mikkola, L. Viazmina, et al. Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys, 52 (2019), p. e10.
[19]
E.A. Lipscomb, K.J. Simpson, S.R. Lyle, J.E. Ring, A.S. Dugan, A.M. Mercurio. The α6β4 integrin maintains the survival of human breast carcinoma cells in vivo. Cancer Res, 65 (23) (2005), pp. 10970-10976.
[20]
A.P. Skubitz, R.C. Bast Jr, E.A. Wayner, P.C. Letourneau, M.S. Wilke. Expression of α6 and β4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. Am J Pathol, 148 (5) (1996), pp. 1445-1461.
[21]
N. Yamakawa, K. Kaneda, Y. Saito, E. Ichihara, K. Morishita. The increased expression of integrin α6 (ITGA6) enhances drug resistance in EVI1(high) leukemia. PLoS One, 7 (1) (2012), p. e30706.
[22]
J.D. Lathia, J. Gallagher, J.M. Heddleston, J. Wang, C.E. Eyler, J. Macswords, et al. Integrin α6 regulates glioblastoma stem cells. Cell Stem Cell, 6 (5) (2010), pp. 421-432.
[23]
Z. Cruz-Monserrate, S. Qiu, B.M. Evers, K.L. O’Connor. Upregulation and redistribution of integrin α6β4 expression occurs at an early stage in pancreatic adenocarcinoma progression. Mod Pathol Pathol Inc, 20 (6) (2007), pp. 656-667.
[24]
M. Chen, M. Sinha, B.A. Luxon, A.R. Bresnick, K.L. O’Connor. Integrin α6β4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J Biol Chem, 284 (3) (2008), pp. 1484-1494.
[25]
E.J. Gang, H.N. Kim, Y.T. Hsieh, Y. Ruan, H.A. Ogana, S. Lee, et al. Integrin α6 mediates the drug resistance of acute lymphoblastic B-cell leukemia. Blood, 136 (2) (2020), pp. 210-223.
[26]
H. Yao, T.T. Price, G. Cantelli, B. Ngo, M.J. Warner, L. Olivere, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature, 560 (7716) (2018), pp. 55-60.
[27]
G.K. Feng, M.Q. Zhang, H.X. Wang, J. Cai, S.P. Chen, Q. Wang, et al. Identification of an integrin α6-targeted peptide for nasopharyngeal carcinoma-specific nanotherapeutics. Adv Ther, 2 (7) (2019), p. 1900018.
[28]
G.K. Feng, J.C. Ye, W.G. Zhang, Y. Mei, C. Zhou, Y.T. Xiao, et al. Integrin α6 targeted positron emission tomography imaging of hepatocellular carcinoma in mouse models. J Controlled Release, 310 (2019), pp. 11-21.
[29]
Y.T. Xiao, C. Zhou, J.C. Ye, X.C. Yang, Z.J. Li, X.B. Zheng, et al. Integrin α6-targeted positron emission tomography imaging of colorectal cancer. ACS Omega, 4 (13) (2019), pp. 15560-15566.
[30]
S. Gao, B. Jia, G. Feng, C. Dong, H. Du, L. Bai, et al. First-in-human pilot study of an integrin α6-targeted radiotracer for SPECT imaging of breast cancer. Signal Transduction Target Ther, 5 (1) (2020), p. 147.
[31]
Y. Mei, Y.H. Li, X.C. Yang, C. Zhou, Z.J. Li, X.B. Zheng, et al. An optimized integrin α6-targeted peptide for positron emission tomography/magnetic resonance imaging of pancreatic cancer and its precancerous lesion. Clin Transl Med, 10 (4) (2020), p. e157.
[32]
W. Zhang, Y. Li, G. Chen, X. Yang, J. Hu, X. Zhang, et al. Integrin α6-targeted molecular imaging of central nervous system leukemia in mice. Front Bioeng Biotechnol, 10 (2022), 812277.
[33]
S. Jaber, I. Iliev, T. Angelova, V. Nemska, I. Sulikovska, E. Naydenova, et al. Synthesis, antitumor and antibacterial studies of new shortened analogues of (KLAKLAK)2-NH2 and their conjugates containing unnatural amino acids. Molecules, 26 (4) (2021), p. 898.
[34]
X. Li, Y. Wang, Y. Zhang, C. Liang, Z. Zhang, Y. Chen, et al. A supramolecular “trident” for cancer immunotherapy. Adv Funct Mater, 31 (23) (2021), p. 2100729.
[35]
A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 46 (W1) (2018), pp. W296-W303.
[36]
H. Kaur, A. Garg, G.P. Raghava. PEPstr: a de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept Lett, 14 (7) (2007), pp. 626-631.
[37]
S. Singh, H. Singh, A. Tuknait, K. Chaudhary, B. Singh, S. Kumaran, et al. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol Direct, 10 (2015), p. 73.
[38]
B.G. Pierce, K. Wiehe, H. Hwang, B.H. Kim, T. Vreven, Z. Weng. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30 (12) (2014), pp. 1771-1773.
[39]
W. Li, X. Zhu, X. Zhou, X. Wang, W. Zhai, B. Li, et al. An orally available PD-1/PD-L 1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy. J Controlled Release Off J Controlled Release Soc, 334 (2021), pp. 376-388.
[40]
D. Tesauro, A. Accardo, C. Diaferia, V. Milano, J. Guillon, L. Ronga, et al. Peptide-based drug-delivery systems in biotechnological applications: recent advances and perspectives. Molecules, 24 (2) (2019), p. E351.
[41]
J.L. Lau, M.K. Dunn. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem, 26 (10) (2017), pp. 2700-2707.
[42]
J.A. DiGiuseppe, S.G. Fuller, M.J. Borowitz. Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: potential usefulness in minimal residual disease detection. Cytometry Part B, 76 (2) (2009), pp. 150-155.
[43]
B.F.S. Shah Scharff, S. Modvig, M. Thastrup, M. Levinsen, M. Degn, L.P. Ryder, et al. A comprehensive clinical study of integrins in acute lymphoblastic leukemia indicates a role of α6/CD49f in persistent minimal residual disease and α5 in the colonization of cerebrospinal fluid. Leuk Lymphoma, 61 (7) (2020), pp. 1714-1718.
[44]
S.M. Ridge, A.E. Whiteley, H. Yao, T.T. Price, M.L. Brockman, A.S. Murray, et al. Pan-PI3Ki targets multiple B-ALL microenvironment interactions that fuel systemic and CNS relapse. Leuk Lymphoma, 62 (11) (2021), pp. 2690-2702.
[45]
D. Barras, N. Chevalier, V. Zoete, R. Dempsey, K. Lapouge, M.A. Olayioye, et al. A WXW motif is required for the anticancer activity of the TAT-RasGAP317-326 peptide. J Biol Chem, 289 (34) (2014), pp. 23701-23711.
[46]
P. Nicole, L. Lins, C. Rouyer-Fessard, C. Drouot, P. Fulcrand, A. Thomas, et al. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC 2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem, 275 (31) (2000), pp. 24003-24012.
[47]
N.L. Daly, Y.K. Chen, F.M. Foley, P.S. Bansal, R. Bharathi, R.J. Clark, et al. The absolute structural requirement for a proline in the P3′-position of Bowman-Birk protease inhibitors is surmounted in the minimized SFTI-1 scaffold. J Biol Chem, 281 (33) (2006), pp. 23668-23675.
[48]
M.W. Jin, S.M. Xu, Q. An. Central nervous disease in pediatric patients during acute lymphoblastic leukemia (ALL): a review. Eur Rev Med Pharmacol Sci, 22 (18) (2018), pp. 6015-6019.
[49]
S. Spitsin, V. Pappa, S.D. Douglas. Truncation of neurokinin-1 receptor-negative regulation of substance P signaling. J Leukocyte Biol, 103 (6) (2018), pp. 1043-1051.
[50]
R.L. Salas, J.K.D.L. Garcia, A.C.R. Miranda, W.L. Rivera, R.B. Nellas, P.M.G. Sabido. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin. Peptides, 104 (2018), pp. 7-14.
[51]
M. Zhang, Y. Wang, X. Li, G. Meng, X. Chen, L. Wang, et al. A single L/D-substitution at Q4 of the mInsA2-10 epitope prevents type 1 diabetes in humanized NOD mice. Front Immunol, 12 (2021), 713276.
[52]
E.Y. Kim, G. Rajasekaran, S.Y. Shin. LL-37-derived short antimicrobial peptide KR-12-a5 and its D-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur J Med Chem, 136 (2017), pp. 428-441.
[53]
X. Li, C. Liu, S. Chen, H. Hu, J. Su, Y. Zou. D-amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions. Bioorg Med Chem Lett, 27 (20) (2017), pp. 4678-4681.
[54]
O.O. Bakare, A. Gokul, R. Wu, L.A. Niekerk, A. Klein, M. Keyster. Biomedical relevance of novel anticancer peptides in the sensitive treatment of cancer. Biomolecules, 11 (8) (2021), p. 1120.
[55]
G. Ghaly, H. Tallima, E. Dabbish, N. Badr ElDin, M.K. Abd El-Rahman, M.A.A. Ibrahim, et al. Anti-cancer peptides: status and future prospects. Molecules, 28 (3) (2023), p. 1148.
[56]
H.M. Ellerby, W. Arap, L.M. Ellerby, R. Kain, R. Andrusiak, G.D. Rio, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med, 5 (9) (1999), pp. 1032-1038.
[57]
R. Smolarczyk, T. Cichoń, K. Graja, J. Hucz, A. Sochanik, S. Szala. Antitumor effect of RGD-4C-GG-D(KLAKLAK)2 peptide in mouse B16(F10) melanoma model. Acta Biochim Pol, 53 (4) (2006), pp. 801-805.
[58]
S. Dufort, L. Sancey, A. Hurbin, S. Foillard, D. Boturyn, P. Dumy, et al. Targeted delivery of a proapoptotic peptide to tumors in vivo. J Drug Targeting, 19 (7) (2010), pp. 582-588.
[59]
S.C. Howard, J. McCormick, C.H. Pui, R.K. Buddington, R.D. Harvey. Preventing and managing toxicities of high-dose methotrexate. Oncologist, 21 (12) (2016), pp. 1471-1482.
[60]
G.B. Qi, Y.J. Gao, L. Wang, H. Wang. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv Mater, 30 (22) (2018), p. e1703444.
[61]
Y. Zhou, Q. Li, Y. Wu, X. Li, Y. Zhou, Z. Wang, et al. Molecularly stimuli-responsive self-assembled peptide nanoparticles for targeted imaging and therapy. ACS Nano, 17 (9) (2023), pp. 8004-8025.
[62]
X. Yu, Z. Zhang, J. Yu, H. Chen, X. Li. Self-assembly of a ibuprofen-peptide conjugate to suppress ocular inflammation. Nanomedicine, 14 (1) (2017), pp. 185-193.
[63]
K. Feng, C. Ma, Y. Liu, X. Yang, Z. Yang, Y. Chen, et al. Encapsulation of LXR ligand by D-Nap-GFFY hydrogel enhances anti-tumorigenic actions of LXR and removes LXR-induced lipogenesis. Theranostics, 11 (6) (2021), pp. 2634-2654.
[64]
M. Lisowska, M. Milczarek, J. Ciekot, J. Kutkowska, W. Hildebrand, A. Rapak, et al. An antibody specific for the dog leukocyte antigen DR (DLA-DR) and its novel methotrexate conjugate inhibit the growth of canine B cell lymphoma. Cancers, 11 (10) (2019), p. E1438.
[65]
Y.S. Zhu, K. Tang, J. Lv. Peptide-drug conjugate-based novel molecular drug delivery system in cancer. Trends Pharmacol Sci, 42 (10) (2021), pp. 857-869.
[66]
X. Zhou, Q.R. Smith, X. Liu. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 13 (4) (2021), p. e1695.
[67]
R. Li, H. He, X. Li, X. Zheng, Z. Li, H. Zhang, et al. EDB-FN targeted probes for the surgical navigation, radionuclide imaging, and therapy of thyroid cancer. Eur J Nucl Med Mol Imaging, 50 (7) (2023), pp. 2100-2113.
AI Summary AI Mindmap
PDF(4899 KB)

Accesses

Citations

Detail

Sections
Recommended

/