Natural Products Improve Organ Microcirculation Dysfunction Following Ischemia/Reperfusion- and Lipopolysaccharide-Induced Disturbances: Mechanistic and Therapeutic Views

Jingyan Han, Quan Li, Kai Sun, Chunshui Pan, Jian Liu, Ping Huang, Juan Feng, Yanchen Liu, Gerald A. Meininger

Engineering ›› 2024, Vol. 38 ›› Issue (7) : 77-99.

PDF(5219 KB)
PDF(5219 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 77-99. DOI: 10.1016/j.eng.2023.11.016
Research
Review

Natural Products Improve Organ Microcirculation Dysfunction Following Ischemia/Reperfusion- and Lipopolysaccharide-Induced Disturbances: Mechanistic and Therapeutic Views

Author information +
History +

Abstract

Microcirculatory disturbances are complex processes caused by many factors, including abnormal vasomotor responses, decreased blood flow velocity, vascular endothelial cell injury, altered leukocyte and endothelial cell interactions, plasma albumin leakage, microvascular hemorrhage, and thrombosis. These disturbances involve multiple mechanisms and interactions among mechanisms that can include energy metabolism, the mitochondrial respiratory chain, oxidative stress, inflammatory factors, adhesion molecules, the cytoskeleton, vascular endothelial cells, caveolae, cell junctions, the vascular basement membrane, neutrophils, monocytes, and platelets. In clinical practice, aside from drugs that target abnormal vasomotor responses and platelet adhesion, there continues to be a lack of multi-target drugs that can regulate the complex mechanistic links and interactions underlying microcirculatory disturbances. Natural products have demonstrated obvious positive therapeutic effects in treating ischemia/reperfu-sion (I/R)- and lipopolysaccharide (LPS)-induced microcirculatory disturbances. In recent years, numerous research papers on the improvement of microcirculatory function by natural products have been published in international journals. In 2008 and 2017, the first listed author of this review was invited to publish reviews in the journal of Pharmacology E Therapeutics on the improvement of microcirculatory disturbances and organ injury induced by I/R using Salvia miltiorrhiza ingredients and other natural components of compounded Chinese medicine, respectively. This review systematically summarizes the effects, targets of action, and mechanisms of natural products regarding improving I/R- and LPS-induced microcirculatory disturbances and tissue injury. Based on this summary, scientific proposals are suggested for the discovery of new drugs to improve microcirculatory disturbances in disease.

Graphical abstract

Keywords

Ischemia/reperfusion / Lipopolysaccharide / Natural products / Leukocyte activation / Hyperpermeability

Cite this article

Download citation ▾
Jingyan Han, Quan Li, Kai Sun, Chunshui Pan, Jian Liu, Ping Huang, Juan Feng, Yanchen Liu, Gerald A. Meininger. Natural Products Improve Organ Microcirculation Dysfunction Following Ischemia/Reperfusion- and Lipopolysaccharide-Induced Disturbances: Mechanistic and Therapeutic Views. Engineering, 2024, 38(7): 77‒99 https://doi.org/10.1016/j.eng.2023.11.016

References

[1]
G. Heusch. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol, 17 (12) (2020), pp. 773-789
[2]
J. Hu, D. Nan, Y. Lu, Z. Niu, Y. Ren, X. Qu, et al.Microcirculation no-reflow phenomenon after acute ischemic stroke. Eur Neurol, 86 (2) (2023), pp. 85-94
[3]
A.D. Widgerow. Ischemia-reperfusion injury: influencing the microcirculatory and cellular environment. Ann Plast Surg, 72 (2) (2014), pp. 253-260
[4]
D. De Backer, D. Orbegozo Cortes, K. Donadello, J.L. Vincent. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence, 5 (1) (2014), pp. 73-79
[5]
M.D. Menger. Microcirculatory disturbances secondary to ischemia-reperfusion. Transplant Proc, 27 (5) (1995), pp. 2863-2865
[6]
H.F. Hao, L.M. Liu, Y.Y. Liu, J. Liu, L. Yan, C.S. Pan, et al. Inhibitory effect of rhynchophylline on contraction of cerebral arterioles to endothelin 1: role of rho kinase. J Ethnopharmacol, 155 (1) (2014), pp. 147-153
[7]
H.F. Hao, L.M. Liu, C.S. Pan, C.S. Wang, Y.S. Gao, J.Y. Fan, et al. Rhynchophylline ameliorates endothelial dysfunction via Src-PI3K/Akt-eNOS cascade in the cultured intrarenal arteries of spontaneous hypertensive rats. Front Physiol, 8 (2017), p. 928
[8]
Y.C. Cui, C.S. Pan, L. Yan, L. Li, B.H. Hu, X. Chang, et al. Ginsenoside Rb 1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway. Sci Rep, 7 (2017), p. 44579
[9]
J.Y. Han, Y. Horie, S. Miura, Y. Akiba, J. Guo, D. Li, et al. Compound Danshen injection improves endotoxin-induced microcirculatory disturbance in rat mesentery. World J Gastroenterol, 13 (26) (2007), pp. 3581-3591
[10]
J. Guo, K. Sun, C.S. Wang, S.P. Fang, Y. Horie, J.Y. Yang, et al. Protective effects of dihydroxylphenyl lactic acid and salvianolic acid B on LPS-induced mesenteric microcirculatory disturbance in rats. Shock, 29 (2) (2008), pp. 205-211
[11]
L.Q. Ma, C.S. Pan, N. Yang, Y.Y. Liu, L. Yan, K. Sun, et al. Posttreatment with Ma-Xing-Shi-Gan-Tang, a Chinese medicine formula, ameliorates lipopolysaccharide-induced lung microvessel hyperpermeability and inflammatory reaction in rat. Microcirculation, 21 (7) (2014), pp. 649-663
[12]
H.N. Mu, Q. Li, C.S. Pan, Y.Y. Liu, L. Yan, B.H. Hu, et al. Caffeic acid attenuates rat liver reperfusion injury through sirtuin 3-dependent regulation of mitochondrial respiratory chain. Free Radic Biol Med, 85 (2015), pp. 237-249
[13]
Y. Ye, Q. Li, C.S. Pan, L. Yan, K. Sun, X.Y. Wang, et al. QiShenYiQi inhibits tissue plasminogen activator-induced brain edema and hemorrhage after ischemic stroke in mice. Front Pharmacol, 12 (2021), p. 759027
[14]
A. Ayididaer, K. Sun, C.S. Pan, L. Yan, Y.Y. Liu, D.T. Li, et al. Post-treatment with yiqifumai injection and its main ingredients attenuates lipopolysaccharide-induced microvascular disturbance in mesentery and ileum. Microcirculation, 28 (4) (2021), p. e12680
[15]
M.X. Wang, Y.Y. Liu, B.H. Hu, X.H. Wei, X. Chang, K. Sun, et al. Total salvianolic acid improves ischemia-reperfusion-induced microcirculatory disturbance in rat mesentery. World J Gastroenterol, 16 (42) (2010), pp. 5306-5316
[16]
C.S. Pan, L. Yan, S.Q. Lin, K. He, Y.C. Cui, Y.Y. Liu, et al. QiShenYiQi pills attenuates ischemia/reperfusion-induced cardiac microvascular hyperpermeability implicating Src/caveolin-1 and RhoA/ROCK/MLC signaling. Front Physiol, 12 (2021), p. 753761
[17]
Y. Zhang, K. Sun, Y.Y. Liu, Y.P. Zhang, B.H. Hu, X. Chang, et al. Ginsenoside Rb 1 ameliorates lipopolysaccharide-induced albumin leakage from rat mesenteric venules by intervening in both trans- and paracellular pathway. Am J Physiol Gastrointest Liver Physiol, 306 (4) (2014), pp. G289-G300
[18]
Q.F. Chen, Y.Y. Liu, C.S. Pan, J.Y. Fan, L. Yan, B.H. Hu, et al. Angioedema and hemorrhage after 4.5-hour tPA (tissue-type plasminogen activator) thrombolysis ameliorated by T 541 via restoring brain microvascular integrity. Stroke, 49 (9) (2018), pp. 2211-2219
[19]
Y.P. Zhang, C.S. Pan, L. Yan, Y.Y. Liu, B.H. Hu, X. Chang, et al. Catalpol restores LPS-elicited rat microcirculation disorder by regulation of a network of signaling involving inhibition of TLR-4 and Src. Am J Physiol Gastrointest Liver Physiol, 311 (6) (2016), pp. G1091-G1104
[20]
Y. Lu, Q. Li, Y.Y. Liu, K. Sun, J.Y. Fan, C.S. Wang, et al. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases. Sci Rep, 5 (2015), p. 13824
[21]
F. Wang, Y.Y. Liu, L.Y. Liu, Q.J. Zeng, C.S. Wang, K. Sun, et al. The attenuation effect of 3,4-dihydroxy-phenyl lactic acid and salvianolic acid B on venular thrombosis induced in rat mesentery by photochemical reaction. Clin Hemorheol Microcirc, 42 (1) (2009), pp. 7-18
[22]
X.S. Xu, Z.Z. Ma, F. Wang, B.H. Hu, C.S. Wang, Y.Y. Liu, et al. The antioxidant cerebralcare granule attenuates cerebral microcirculatory disturbance during ischemia-reperfusion injury. Shock, 32 (2) (2009), pp. 201-209
[23]
L.L. Yan, X.H. Wei, Q.P. Shi, C.S. Pan, K.Y. Li, B. Zhang, et al. Cardiotonic pills(R) protects from myocardial fibrosis caused by in stent restenosis in miniature pigs. Phytomedicine, 106 (2022), p. 154405
[24]
G. Anwaier, T.T. Xie, C.S. Pan, A.Q. Li, L. Yan, D. Wang, et al. QiShenYiQi pill ameliorates cardiac fibrosis after pressure overload-induced cardiac hypertrophy by regulating FHL2 and the macrophage RP S19/TGF-β1 signaling pathway. Front Pharmacol, 13 (2022), p. 918335
[25]
X.H. Wei, Y.Y. Liu, Q. Li, L. Yan, B.H. Hu, C.S. Pan, et al. Treatment with cardiotonic pills(R) after ischemia-reperfusion ameliorates myocardial fibrosis in rats. Microcirculation, 20 (1) (2013), pp. 17-29
[26]
Q.N. Zheng, X.H. Wei, C.S. Pan, Q. Li, Y.Y. Liu, J.Y. Fan, et al. QiShenYiQi pills(R) ameliorates ischemia/reperfusion-induced myocardial fibrosis involving RP S19-mediated TGF-β1/Smads signaling pathway. Pharmacol Res, 146 (2019), p. 104272
[27]
J.Y. Han, J.Y. Fan, Y. Horie, S. Miura, D.H. Cui, H. Ishii, et al. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther, 117 (2) (2008), pp. 280-295
[28]
J.Y. Han, Q. Li, Z.Z. Ma, J.Y. Fan. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacol Ther, 177 (2017), pp. 146-173
[29]
J.N. Hoffmann, B. Vollmar, M.W. Laschke, J.M. Fertmann, K.W. Jauch, M.D. Menger. Microcirculatory alterations in ischemia-reperfusion injury and sepsis: effects of activated protein C and thrombin inhibition. Crit Care, 9 (Suppl 4) (2005), pp. S33-S37
[30]
A. Prasad, G.W. Stone, D.R. Holmes, B. Gersh. Reperfusion injury, microvascular dysfunction, and cardioprotection: the “dark side” of reperfusion. Circulation, 120 (21) (2009), pp. 2105-2112
[31]
H. Yu, T. Kalogeris, R.J. Korthuis. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med, 135 (2019), pp. 182-197
[32]
A.R. Pries, W.M. Kuebler, H. Habazettl. Coronary microcirculation in ischemic heart disease. Curr Pharm Des, 24 (25) (2018), pp. 2893-2899
[33]
D. Cooper, K.Y. Stokes, A. Tailor, D.N. Granger. Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol, 2 (3) (2002), pp. 165-180
[34]
J. Li, H. Zhang, C. Zhang. Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion: mechanisms and therapeutic implications. J Mol Cell Cardiol, 52 (4) (2012), pp. 865-872
[35]
D.N. Granger. Ischemia-reperfusion: mechanisms of microvascular dysfunction and the influence of risk factors for cardiovascular disease. Microcirculation, 6 (3) (1999), pp. 167-178
[36]
I. Valikeserlis, A.A. Athanasiou, D. Stakos. Cellular mechanisms and pathways in myocardial reperfusion injury. Coron Artery Dis, 32 (6) (2021), pp. 567-577
[37]
M.Y. Wu, G.T. Yiang, W.T. Liao, A.P. Tsai, Y.L. Cheng, P.W. Cheng, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem, 46 (4) (2018), pp. 1650-1667
[38]
F. Arslan, D.P. de Kleijn, L. Timmers, P.A. Doevendans, G. Pasterkamp. Bridging innate immunity and myocardial ischemia/reperfusion injury: the search for therapeutic targets. Curr Pharm Des, 14 (12) (2008), pp. 1205-1216
[39]
M.P. Moos, C.D. Funk. Endothelial cysteinyl leukotriene 2 receptor expression and myocardial ischemia/reperfusion injury. Trends Cardiovasc Med, 18 (7) (2008), pp. 268-273
[40]
Y.M. Lee, G. Hsiao, H.R. Chen, Y.C. Chen, J.R. Sheu, M.H. Yen. Magnolol reduces myocardial ischemia/reperfusion injury via neutrophil inhibition in rats. Eur J Pharmacol, 422 (1-3) (2001), pp. 159-167
[41]
L. Li, C.S. Pan, L. Yan, Y.C. Cui, Y.Y. Liu, H.N. Mu, et al. Ginsenoside Rg 1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways. Front Physiol, 9 (2018), p. 78
[42]
L. Yan, C.S. Pan, Y.Y. Liu, Y.C. Cui, B.H. Hu, X. Chang, et al. The composite of 3,4-dihydroxyl-phenyl lactic acid and notoginsenoside R1 attenuates myocardial ischemia and reperfusion injury through regulating mitochondrial respiratory chain. Front Physiol, 12 (2021), p. 538962
[43]
Y. Komarova, A.B. Malik. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol, 72 (2010), pp. 463-493
[44]
J.H. Chidlow Jr., W. C. Sessa. Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res, 86 (2) (2010), pp. 219-225
[45]
Y. Wallez, P. Huber. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta, 1778 (3) (2008), pp. 794-809
[46]
A.H. Korayem, P.E. Mujica, H. Aramoto, R.G. Durán, P.R. Nepali, D.D. Kim, et al. Endothelial cAMP deactivates ischemia-reperfusion-induced microvascular hyperpermeability via Rap1-mediated mechanisms. Am J Physiol Heart Circ Physiol, 313 (1) (2017), pp. H179-H189
[47]
Y. Yu, N. Xing, X. Xu, Y. Zhu, S. Wang, G. Sun, et al.Tournefolic acid B, derived from Clinopodium chinense (Benth.) Kuntze, protects against myocardial ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress-regulated apoptosis via PI3K/AKT pathways. Phytomedicine, 52 (2019), pp. 178-186
[48]
K. He, L. Yan, S.Q. Lin, Y.Y. Liu, B.H. Hu, X. Chang, et al. Implication of IGF1R signaling in the protective effect of astragaloside IV on ischemia and reperfusion-induced cardiac microvascular endothelial hyperpermeability. Phytomedicine, 100 (2022), p. 154045
[49]
L. Tu, C.S. Pan, X.H. Wei, L. Yan, Y.Y. Liu, J.Y. Fan, et al. Astragaloside IV protects heart from ischemia and reperfusion injury via energy regulation mechanisms. Microcirculation, 20 (8) (2013), pp. 736-747
[50]
T.C. Lu, Y.H. Wu, W.Y. Chen, Y.C. Hung. Targeting oxidative stress and endothelial dysfunction using tanshinone IIA for the treatment of tissue inflammation and fibrosis. Oxid Med Cell Longev, 2022 (2022), p. 2811789
[51]
C.L. Zhai, M.Q. Zhang, Y. Zhang, H.X. Xu, J.M. Wang, G.P. An, et al. Glycyrrhizin protects rat heart against ischemia-reperfusion injury through blockade of HMGB1-dependent phospho-JNK/Bax pathway. Acta Pharmacol Sin, 33 (12) (2012), pp. 1477-1487
[52]
R. Badalzadeh, B. Yousefi, M. Majidinia, H. Ebrahimi. Anti-arrhythmic effect of diosgenin in reperfusion-induced myocardial injury in a rat model: activation of nitric oxide system and mitochondrial KATP channel. J Physiol Sci, 64 (6) (2014), pp. 393-400
[53]
M. Wang, Y. Tian, Y.Y. Du, G.B. Sun, X.D. Xu, H. Jiang, et al. Protective effects of araloside C against myocardial ischaemia/reperfusion injury: potential involvement of heat shock protein 90. J Cell Mol Med, 21 (9) (2017), pp. 1870-1880
[54]
W. Zhang, Z. Sun, F. Meng, B. Schisandrin. Schisandrin B ameliorates myocardial ischemia/reperfusion injury through attenuation of endoplasmic reticulum stress-induced apoptosis. Inflammation, 40 (6) (2017), pp. 1903-1911
[55]
A. Ahmadi, A.W. Hayes, G. Karimi. Resveratrol and endoplasmic reticulum stress: a review of the potential protective mechanisms of the polyphenol. Phytother Res, 35 (10) (2021), pp. 5564-5583
[56]
S. Tong, L. Zhang, J. Joseph, X. Jiang. Celastrol pretreatment attenuates rat myocardial ischemia/reperfusion injury by inhibiting high mobility group box 1 protein expression via the PI3K/Akt pathway. Biochem Biophys Res Commun, 497 (3) (2018), pp. 843-849
[57]
G.L. Zhao, L.M. Yu, W.L. Gao, W.X. Duan, B. Jiang, X.D. Liu, et al. Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin, 37 (3) (2016), pp. 354-367
[58]
A. Mokhtari-Zaer, N. Marefati, S.L. Atkin, A.E. Butler, A. Sahebkar. The protective role of curcumin in myocardial ischemia-reperfusion injury. J Cell Physiol, 234 (1) (2018), pp. 214-222
[59]
G. Vilahur, L. Casaní, E. Peña, J. Crespo, O. Juan-Babot, S. Ben-Aicha, et al. Silybum marianum provides cardioprotection and limits adverse remodeling post-myocardial infarction by mitigating oxidative stress and reactive fibrosis. Int J Cardiol, 270 (2018), pp. 28-35
[60]
W. Qin, J. Guo, W. Gou, S. Wu, N. Guo, Y. Zhao, et al. Molecular mechanisms of isoflavone puerarin against cardiovascular diseases: what we know and where we go. Chin Herb Med, 14 (2) (2022), pp. 234-243
[61]
Z. Tao, Y. Ge, N. Zhou, Y. Wang, W. Cheng, Z. Yang. Puerarin inhibits cardiac fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-β1 (TGF-β1) pathway in myocardial infarction mice. Am J Transl Res, 8 (10) (2016), pp. 4425-4433
[62]
H. Zhou, D. Li, P. Zhu, S. Hu, N. Hu, S. Ma, et al. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways. J Pineal Res, 63 (4) (2017), p. e12438
[63]
Y. Meng, W.Z. Li, Y.W. Shi, B.F. Zhou, R. Ma, W.P. Li. Danshensu protects against ischemia/reperfusion injury and inhibits the apoptosis of H9c2 cells by reducing the calcium overload through the p-JNK-NF-κB-TRPC6 pathway. Int J Mol Med, 37 (1) (2016), pp. 258-266
[64]
W. Liu, X. Deng, Y. Su, H. Geng, M. Pan. Effect of gypenosides on myocardial ischemia-reperfusion injury and its mechanism. Neuroendocrinol Lett, 42 (1) (2021), pp. 22-27
[65]
G. Fan, J. Yu, P.F. Asare, L. Wang, H. Zhang, B. Zhang, et al. Danshensu alleviates cardiac ischaemia/reperfusion injury by inhibiting autophagy and apoptosis via activation of mTOR signalling. J Cell Mol Med, 20 (10) (2016), pp. 1908-1919
[66]
Y. Wang, X. Li, X. Wang, W. Lau, Y. Wang, Y. Xing, et al. Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway. PLoS One, 8 (8) (2013), p. e70956
[67]
Y. Tan, D. Mui, S. Toan, P. Zhu, R. Li, H. Zhou. SERCA overexpression improves mitochondrial quality control and attenuates cardiac microvascular ischemia-reperfusion injury. Mol Ther Nucleic Acids, 22 (2020), pp. 696-707
[68]
H. Zhou, C. Shi, S. Hu, H. Zhu, J. Ren, Y. Chen. BI 1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways. Angiogenesis, 21 (3) (2018), pp. 599-615
[69]
R. Zou, W. Shi, J. Qiu, N. Zhou, N. Du, H. Zhou, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol, 21 (1) (2022), p. 106
[70]
K. He, L. Yan, C.S. Pan, Y.Y. Liu, Y.C. Cui, B.H. Hu, et al. ROCK-dependent ATP5D modulation contributes to the protection of notoginsenoside NR1 against ischemia-reperfusion-induced myocardial injury. Am J Physiol Heart Circ Physiol, 307 (12) (2014), pp. H1764-H1776
[71]
L. Jiang, X. Yin, Y.H. Chen, Y. Chen, W. Jiang, H. Zheng, et al. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial Complex I. Theranostics, 11 (4) (2021), pp. 1703-1720
[72]
X.Y. Yang, K. He, C.S. Pan, Q. Li, Y.Y. Liu, L. Yan, et al. 3,4-Dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1α subunit 10 to ameliorate cardiac reperfusion injury. Sci Rep, 5 (2015), p. 10739
[73]
F. Tacke, H.W. Zimmermann. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol, 60 (5) (2014), pp. 1090-1096
[74]
M.M. Krebber, C.G.M. van Dijk, R.W.M. Vernooij, M.M. Brandt, C.A. Emter, C.D. Rau, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in extracellular matrix remodeling during left ventricular diastolic dysfunction and heart failure with preserved ejection fraction: a systematic review and meta-analysis. Int J Mol Sci, 21 (18) (2020), p. 6742
[75]
F. Li, J. Zong, H. Zhang, P. Zhang, L. Xu, K. Liang, et al. Orientin reduces myocardial infarction size via eNOS/NO signaling and thus mitigates adverse cardiac remodeling. Front Pharmacol, 8 (2017), p. 926
[76]
Y.J. Wan, Q. Guo, D. Liu, Y. Jiang, K.W. Zeng, P.F. Tu. Protocatechualdehyde reduces myocardial fibrosis by directly targeting conformational dynamics of collagen. Eur J Pharmacol, 855 (2019), pp. 183-191
[77]
F. Wang, Q. Hu, C.H. Chen, X.S. Xu, C.M. Zhou, Y.F. Zhao, et al. The protective effect of Cerebralcare Granule(R) on brain edema, cerebral microcirculatory disturbance, and neuron injury in a focal cerebral ischemia rat model. Microcirculation, 19 (3) (2012), pp. 260-272
[78]
H. Zhang, W. Tang, S. Wang, J. Zhang, X. Fan. Tetramethylpyrazine inhibits platelet adhesion and inflammatory response in vascular endothelial cells by inhibiting P38 MAPK and NF-κB signaling pathways. Inflammation, 43 (1) (2020), pp. 286-297
[79]
M. Li, Y.Z. Qu, Z.W. Zhao, S.X. Wu, Y.Y. Liu, X.Y. Wei, et al. Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochem Int, 60 (5) (2012), pp. 458-465
[80]
C. Zhang, Z. Shi, Q. Xu, J. He, L. Chen, Z. Lu, et al. Astragaloside IV alleviates stroke-triggered early brain injury by modulating neuroinflammation and ferroptosis via the Nrf2/HO-1 signaling pathway. Acta Cir Bras, 38 (2023), p. e380723
[81]
M. Jiang, X.Y. Wang, W.Y. Zhou, J. Li, J. Wang, L.P. Guo. Cerebral protection of salvianolic acid A by the inhibition of granulocyte adherence. Am J Chin Med, 39 (1) (2011), pp. 111-120
[82]
X.W. Mao, C.S. Pan, P. Huang, Y.Y. Liu, C.S. Wang, L. Yan, et al. Levo-tetrahydropalmatine attenuates mouse blood-brain barrier injury induced by focal cerebral ischemia and reperfusion: involvement of Src kinase. Sci Rep, 5 (2015), p. 11155
[83]
C.D. Liu, N.N. Liu, S. Zhang, G.D. Ma, H.G. Yang, L.L. Kong, et al. Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway. Acta Pharmacol Sin, 42 (3) (2021), pp. 370-381
[84]
W. Zhang, J.K. Song, X. Zhang, Q.M. Zhou, G.R. He, X.N. Xu, et al. Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation. Chin J Nat Med, 16 (3) (2018), pp. 184-193
[85]
Y. Fu, R. Xing, L. Wang, L. Yang, B. Jiang. Neurovascular protection of salvianolic acid B and ginsenoside Rg1 combination against acute ischemic stroke in rats. Neuroreport, 32 (13) (2021), pp. 1140-1146
[86]
C. Tang, H. Xue, C. Bai, R. Fu, A. Wu. The effects of Tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine, 17 (14) (2010), pp. 1145-1149
[87]
W.J. Zhang, J. Feng, R. Zhou, L.Y. Ye, H.L. Liu, L. Peng, et al. Tanshinone IIA protects the human blood-brain barrier model from leukocyte-associated hypoxia-reoxygenation injury. Eur J Pharmacol, 648 (1-3) (2010), pp. 146-152
[88]
P. Gong, Z. Zhang, Y. Zou, Q. Tian, S. Han, Z. Xu, et al. Tetramethylpyrazine attenuates blood-brain barrier disruption in ischemia/reperfusion injury through the JAK/STAT signaling pathway. Eur J Pharmacol, 854 (2019), pp. 289-297
[89]
B. Liu, Y. Li, Y. Han, S. Wang, H. Yang, Y. Zhao, et al. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/ 9 pathway after acute ischemic stroke. Phytomedicine, 90 (2021), p. 153660
[90]
S.H. Xu, M.S. Yin, B. Liu, M.L. Chen, G.W. He, P.P. Zhou, et al. Tetramethylpyrazine-2′-O-sodium ferulate attenuates blood-brain barrier disruption and brain oedema after cerebral ischemia/reperfusion. Hum Exp Toxicol, 36 (7) (2017), pp. 670-680
[91]
Y. Zhou, H.Q. Li, L. Lu, D.L. Fu, A.J. Liu, J.H. Li, et al. Ginsenoside Rg 1 provides neuroprotection against blood brain barrier disruption and neurological injury in a rat model of cerebral ischemia/reperfusion through downregulation of aquaporin 4 expression. Phytomedicine, 21 (7) (2014), pp. 998-1003
[92]
H.J. Gao, P.F. Liu, P.W. Li, Z.Y. Huang, F.B. Yu, T. Lei, et al. Ligustrazine monomer against cerebral ischemia/reperfusion injury. Neural Regen Res, 10 (5) (2015), pp. 832-840
[93]
T.L. Yen, C.K. Hsu, W.J. Lu, C.Y. Hsieh, G. Hsiao, D.S. Chou, et al. Neuroprotective effects of Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), in ischemic stroke of rats. J Agric Food Chem, 60 (8) (2012), pp. 1937-1944
[94]
H.N. Mu, Q. Li, J.Y. Fan, C.S. Pan, Y.Y. Liu, L. Yan, et al. Caffeic acid attenuates rat liver injury after transplantation involving PDIA3-dependent regulation of NADPH oxidase. Free Radic Biol Med, 129 (2018), pp. 202-214
[95]
W.X. Chen, F. Wang, Y.Y. Liu, Q.J. Zeng, K. Sun, X. Xue, et al. Effect of notoginsenoside R1 on hepatic microcirculation disturbance induced by gut ischemia and reperfusion. World J Gastroenterol, 14 (1) (2008), pp. 29-37
[96]
J.Y. Han, Y. Horie, J.Y. Fan, K. Sun, J. Guo, S. Miura, et al. Potential of 3,4-dihydroxy-phenyl lactic acid for ameliorating ischemia-reperfusion-induced microvascular disturbance in rat mesentery. Am J Physiol Gastrointest Liver Physiol, 296 (1) (2009), pp. G36-G44
[97]
C. Li, Q. Li, Y.Y. Liu, M.X. Wang, C.S. Pan, L. Yan, et al. Protective effects of notoginsenoside R1 on intestinal ischemia-reperfusion injury in rats. Am J Physiol Gastrointest Liver Physiol, 306 (2) (2014), pp. G111-G122
[98]
N.H. Tung, K. Sun, J.Y. Fan, Y. Shoyama, J.Y. Han. Oregonin from the bark of Alnus japonica restrained ischemia-reperfusion-induced mesentery oxidative stress by inhibiting NADPH oxidase activation. Microcirculation, 21 (8) (2014), pp. 688-695
[99]
H. Lin, X. Zhang, D. Wang, J. Liu, L. Yuan, J. Liu, et al. Anwulignan ameliorates the intestinal ischemia/reperfusion. J Pharmacol Exp Ther, 378 (3) (2021), pp. 222-234
[100]
Y.D. Feng, W. Ye, W. Tian, J.R. Meng, M. Zhang, Y. Sun, et al. Old targets, new strategy: apigenin-7-O-β-D-(-6′-p-coumaroyl)-glucopyranoside prevents endothelial ferroptosis and alleviates intestinal ischemia-reperfusion injury through HO-1 and MAO-B inhibition. Free Radic Biol Med, 184 (2022), pp. 74-88
[101]
S. Fan, X. Feng, K. Li, B. Li, Y. Diao. Protective mechanism of ethyl gallate against intestinal ischemia-reperfusion injury in mice by in vivo and in vitro studies based on transcriptomics. Chem Biodivers, 20 (1) (2023), p. e202200643
[102]
S. Fan, Y. Xu, K. Li, B. Li, Y. Diao. Ellagic acid alleviates mice intestinal ischemia-reperfusion injury: a study based on transcriptomics combined with functional experiments. Chem Biodivers, 19 (11) (2022), p. e202200345
[103]
K. Sun, C.S. Wang, J. Guo, Y. Horie, S.P. Fang, F. Wang, et al. Protective effects of ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1 on lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Life Sci, 81 (6) (2007), pp. 509-518
[104]
J.Y. Yang, K. Sun, C.S. Wang, J. Guo, X. Xue, Y.Y. Liu, et al. Improving effect of post-treatment with Panax notoginseng saponins on lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Clin Hemorheol Microcirc, 40 (2) (2008), pp. 119-131
[105]
Q. Yuan, Y.Y. Liu, K. Sun, C.H. Chen, C.M. Zhou, C.S. Wang, et al. Improving effect of pretreatment with yiqifumai on LPS-induced microcirculatory disturbance in rat mesentery. Shock, 32 (3) (2009), pp. 310-316
[106]
K.A. Fitzgerald, J.C. Kagan. Toll-like receptors and the control of immunity. Cell, 180 (6) (2020), pp. 1044-1066
[107]
P.X. Liew, P. Kubes. The neutrophil’s role during health and disease. Physiol Rev, 99 (2) (2019), pp. 1223-1248
[108]
K.A. Brown, S.D. Brain, J.D. Pearson, J.D. Edgeworth, S.M. Lewis, D.F. Treacher. Neutrophils in development of multiple organ failure in sepsis. Lancet, 368 (9530) (2006), pp. 157-169
[109]
J.E. Meegan, X. Yang, R.S. Beard Jr. M. Jannaway, V. Chatterjee, T.E. Taylor-Clark, et al. Citrullinated histone 3 causes endothelial barrier dysfunction. Biochem Biophys Res Commun, 503 (3) (2018), pp. 1498-1502
[110]
M. Jimenez-Alcazar, C. Rangaswamy, R. Panda, J. Bitterling, Y.J. Simsek, A.T. Long, et al.Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science, 358 (6367) (2017), pp. 1202-1206
[111]
D. Mehta, A.B. Malik. Signaling mechanisms regulating endothelial permeability. Physiol Rev, 86 (1) (2006), pp. 279-367
[112]
H.M. Wang, P. Huang, Q. Li, L.L. Yan, K. Sun, L. Yan, et al. Post-treatment with Qing-Ying-Tang, a compound Chinese medicine relives lipopolysaccharide-induced cerebral microcirculation disturbance in mice. Front Physiol, 10 (2019), p. 1320
[113]
D.T. Li, K. Sun, P. Huang, C.S. Pan, L. Yan, A. Ayan, et al. Yiqifumai injection and its main ingredients attenuate lipopolysaccharide-induced cerebrovascular hyperpermeability through a multi-pathway mode. Microcirculation, 26 (7) (2019), p. e12553
[114]
K.T. Cheng, S. Xiong, Z. Ye, Z. Hong, A. Di, K.M. Tsang, et al. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest, 127 (11) (2017), pp. 4124-4135
[115]
M. Cen, W. Ouyang, W. Zhang, L. Yang, X. Lin, M. Dai, et al. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol, 41 (2021), p. 101936
[116]
F. Ba, X. Zhou, Y. Zhang, C. Wu, S. Xu, L. Wu, et al. Lipoxin A 4 ameliorates alveolar fluid clearance disturbance in lipopolysaccharide-induced lung injury via aquaporin 5 and MAPK signaling pathway. J Thorac Dis, 11 (8) (2019), pp. 3599-3608
[117]
C. Keskinidou, N.S. Lotsios, A.G. Vassiliou, I. Dimopoulou, A. Kotanidou, S.E. Orfanos. The interplay between aquaporin-1 and the hypoxia-inducible factor 1 alpha in a lipopolysaccharide-induced lung injury model in human pulmonary microvascular endothelial cells. Int J Mol Sci, 23 (18) (2022), p. 10588
[118]
Q. Li, J.Y. Fan, J.Y. Han. Chinese herbal remedies affecting thrombosis and hemostasis: a review. World J Tradit Chin Med, 1 (2) (2015), pp. 38-49
[119]
G. Zhang, J. Han, E.J. Welch, R.D. Ye, T.A. Voyno-Yasenetskaya, A.B. Malik, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol, 182 (12) (2009), pp. 7997-8004
[120]
C. Wu, W. Lu, Y. Zhang, G. Zhang, X. Shi, Y. Hisada, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity, 50 (6) (2019), pp. 1401-1411
[121]
T.A. Fuchs, A. Brill, D. Duerschmied, D. Schatzberg, M. Monestier, D.D. Myers Jr, et al.Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA, 107 (36) (2010), pp. 15880-15885
[122]
S. Massberg, L. Grahl, M.L. von Bruehl, D. Manukyan, S. Pfeiler, C. Goosmann, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med, 16 (8) (2010), pp. 887-896
[123]
J.Y. Han, Q. Li, C.S. Pan, K. Sun, J.Y. Fan. Progression of the Wei-Qi-Ying-Xue syndrome, microcirculatory disturbances, in infectious diseases and treatment with traditional Chinese medicine. World J Tradit Chin Med, 8 (2) (2022), pp. 169-180
[124]
M. L'Heureux, M. Sternberg, L. Brath, J. Turlington, M.G. Kashiouris. Sepsis-induced cardiomyopathy: a comprehensive review. Curr Cardiol Rep, 22 (5) (2020), p. 35
[125]
W. Liang, J. Li, C. Bai, Y. Chen, Y. Li, G. Huang, et al. Interleukin-5 deletion promotes sepsis-induced M1 macrophage differentiation, deteriorates cardiac dysfunction, and exacerbates cardiac injury via the NF-κB p 65 pathway in mice. Biofactors, 46 (6) (2020), pp. 1006-1017
[126]
E.L. Mills, B. Kelly, A. Logan, A.S.H. Costa, M. Varma, C.E. Bryant, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 167 (2) (2016), pp. 457-470
[127]
Y.J. Li, D. Han, X.S. Xu, Y.Y. Liu, K. Sun, J.Y. Fan, et al. Protective effects of 3,4-dihydroxyphenyl lactic acid on lipopolysaccharide-induced cerebral microcirculatory disturbance in mice. Clin Hemorheol Microcirc, 50 (4) (2012), pp. 267-278
[128]
C.H. Li, Y. Zhou, P.F. Tu, K.W. Zeng, Y. Jiang. Natural carbazole alkaloid murrayafoline A displays potent anti-neuroinflammatory effect by directly targeting transcription factor Sp1 in LPS-induced microglial cells. Bioorg Chem, 129 (2022), p. 106178
[129]
Z.C. Wang, Q. Chen, J. Wang, L.S. Yu, L.W. Chen. Sulforaphane mitigates LPS-induced neuroinflammation through modulation of cezanne/NF-κB signalling. Life Sci, 262 (2020), p. 118519
[130]
Q. Yue, Y. Xu, L. Lin, M.P.M. Hoi. Canthin-6-one (CO) from Picrasma quassioides (D.Don) Benn. ameliorates lipopolysaccharide (LPS)-induced astrocyte activation and associated brain endothelial disruption. Phytomedicine, 101 (2022), p. 154108
[131]
H. Li, P. Wang, F. Huang, J. Jin, H. Wu, B. Zhang, et al. Astragaloside IV protects blood-brain barrier integrity from LPS-induced disruption via activating Nrf 2 antioxidant signaling pathway in mice. Toxicol Appl Pharmacol, 340 (2018), pp. 58-66
[132]
Y.L. Yang, X. Cheng, W.H. Li, M. Liu, Y.H. Wang, G.H. Du. Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. Int J Mol Sci, 20 (3) (2019), p. 491
[133]
Y. Li, X.T. Liu, P.L. Zhang, Y.C. Li, M.R. Sun, Y.T. Wang, et al. Hydroxysafflor yellow A blocks HIF-1α induction of NOX2 and protects ZO-1 protein in cerebral microvascular endothelium. Antioxidants, 11 (4) (2022), p. 728
[134]
N. Yang, Y.Y. Liu, C.S. Pan, K. Sun, X.H. Wei, X.W. Mao, et al. Pretreatment with andrographolide pills(R) attenuates lipopolysaccharide-induced pulmonary microcirculatory disturbance and acute lung injury in rats. Microcirculation, 21 (8) (2014), pp. 703-716
[135]
Y.F. Tsai, C.Y. Chen, W.Y. Chang, Y.T. Syu, T.L. Hwang. Resveratrol suppresses neutrophil activation via inhibition of Src family kinases to attenuate lung injury. Free Radic Biol Med, 145 (2019), pp. 67-77
[136]
Y.F. Tsai, S.C. Yang, Y.H. Hsu, C.Y. Chen, P.J. Chen, Y.T. Syu, et al. Carnosic acid inhibits reactive oxygen species-dependent neutrophil extracellular trap formation and ameliorates acute respiratory distress syndrome. Life Sci, 321 (2023), p. 121334
[137]
T. Lin, W. Luo, Z. Li, L. Zhang, X. Zheng, L. Mai, et al. Rhamnocitrin extracted from Nervilia fordii inhibited vascular endothelial activation via miR-185/STIM-1/SOCE/NFATc3.Phytomedicine, 79 (2020), p. 153350
[138]
G.R. Chen, G. Zhang, M.Y. Li, J. Jing, J. Wang, X. Zhang, et al. The effective components of Huanglian Jiedu Decoction against sepsis evaluated by a lipid A-based affinity biosensor. J Ethnopharmacol, 186 (2016), pp. 369-376
[139]
X.X. Li, R. Yuan, Q.Q. Wang, S. Han, Z. Liu, Q. Xu, et al. Rotundic acid reduces LPS-induced acute lung injury in vitro and in vivo through regulating TLR4 dimer. Phytother Res, 35 (8) (2021), pp. 4485-4498
[140]
H.L. Xu, G.H. Chen, Y.T. Wu, L.P. Xie, Z.B. Tan, B. Liu, et al. Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting Toll like receptor 4 signaling pathway. J Ginseng Res, 46 (1) (2022), pp. 156-166
[141]
W. Zhu, M. Wang, L. Jin, B. Yang, B. Bai, R.N. Mutsinze, et al. Licochalcone A protects against LPS-induced inflammation and acute lung injury by directly binding with myeloid differentiation factor 2 (MD2). Br J Pharmacol, 180 (8) (2023), pp. 1114-1131
[142]
Q. Di, X. Zhao, R. Zhang, X. Ma, X. Liang, X. Li, et al. Novel clerodane-type diterpenoid cintelactone A suppresses lipopolysaccharide-induced inflammation by promoting ubiquitination, proteasomal degradation of TRAF6. Pharmacol Res, 164 (2021), p. 105386
[143]
Y.F. Tsai, T.C. Chu, W.Y. Chang, Y.C. Wu, F.R. Chang, S.C. Yang, et al. 6-Hydroxy-5,7-dimethoxy-flavone suppresses the neutrophil respiratory burst via selective PDE 4 inhibition to ameliorate acute lung injury. Free Radic Biol Med, 106 (2017), pp. 379-392
[144]
Y.Z. Wang, Y.L. Wang, H.J. Che, Y.H. Jia, H.F. Wang, L.F. Zuo, et al. Sappanone A: a natural PDE4 inhibitor with dual anti-inflammatory and antioxidant activities from the heartwood of Caesalpinia sappan L. J Ethnopharmacol, 304(2023), p. 116020
[145]
W. Li, H. Xu, J. Shao, J. Chen, Y. Lin, Z. Zheng, et al. Discovery of alantolactone as a naturally occurring NLRP 3 inhibitor to alleviate NLRP3-driven inflammatory diseases in mice. Br J Pharmacol, 180 (12) (2023), pp. 1634-1647
[146]
H. Lv, Q. Liu, Z. Wen, H. Feng, X. Deng, X. Ci. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol, 12 (2017), pp. 311-324
[147]
J. Li, S.H. Deng, J. Li, L. Li, F. Zhang, Y. Zou, et al. Obacunone alleviates ferroptosis during lipopolysaccharide-induced acute lung injury by upregulating Nrf2-dependent antioxidant responses. Cell Mol Biol Lett, 27 (1) (2022), p. 29
[148]
T. Li, Y. Liu, W. Xu, X. Dai, R. Liu, Y. Gao, et al. Polydatin mediates parkin-dependent mitophagy and protects against mitochondria-dependent apoptosis in acute respiratory distress syndrome. Lab Invest, 99 (6) (2019), pp. 819-829
[149]
K. Sun, R. Huang, L. Yan, D.T. Li, Y.Y. Liu, X.H. Wei, et al. Schisandrin attenuates lipopolysaccharide-induced lung injury by regulating TLR-4 and Akt/FoxO 1 signaling pathways. Front Physiol, 9 (2018), p. 1104
[150]
Y. Hou, J. Li, Y. Ding, Y. Cui, H. Nie. Luteolin attenuates lipopolysaccharide-induced acute lung injury/acute respiratory distress syndrome by activating alveolar epithelial sodium channels via cGMP/PI3K pathway. J Ethnopharmacol, 282 (2022), p. 114654
[151]
Y.Q. Zhang, Y.J. Liu, Y.F. Mao, W.W. Dong, X.Y. Zhu, L. Jiang. Resveratrol ameliorates lipopolysaccharide-induced epithelial mesenchymal transition and pulmonary fibrosis through suppression of oxidative stress and transforming growth factor-β1 signaling. Clin Nutr, 34 (4) (2015), pp. 752-760
[152]
H. Yang, C. Hua, X. Yang, X. Fan, H. Song, L. Peng, et al. Pterostilbene prevents LPS-induced early pulmonary fibrosis by suppressing oxidative stress, inflammation and apoptosis in vivo. Food Funct, 11 (5) (2020), pp. 4471-4484
[153]
W. Lukita-Atmadja, Y. Ito, G.L. Baker, R.S. McCuskey. Effect of curcuminoids as anti-inflammatory agents on the hepatic microvascular response to endotoxin. Shock, 17 (5) (2002), pp. 399-403
[154]
Y. Liu, N. Liu, Y. Liu, H. He, Z. Luo, W. Liu, et al. Ginsenoside Rb1 reduces D-GalN/LPS-induced acute liver injury by regulating TLR4/NF-κB signaling and NLRP3 inflammasome. J Clin Transl Hepatol, 10 (3) (2022), pp. 474-485
[155]
W.J. Zhang, B. Frei. Astragaloside IV inhibits NF-κB activation and inflammatory gene expression in LPS-treated mice. Mediators Inflamm, 2015 (2015), p. 274314
[156]
C. Pang, C. Wen, Y. Liang, H. Luo, L. Wei, H. Liu, et al. Asperosaponin VI protects mice from sepsis by regulating Hippo and Rho signaling pathway. Phytomedicine, 99 (2022), p. 154010
[157]
S. Huang, Y. Wang, S. Xie, Y. Lai, C. Mo, T. Zeng, et al. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice. Phytomedicine, 101 (2022), p. 154117
[158]
Y.C. Hsu, Y.T. Chiu, C.C. Cheng, C.F. Wu, Y.L. Lin, Y.T. Huang. Antifibrotic effects of tetrandrine on hepatic stellate cells and rats with liver fibrosis. J Gastroenterol Hepatol, 22 (1) (2007), pp. 99-111
[159]
K. Deng, Z. Dai, P. Yang, D. Yang, Y. Zhou. LPS-induced macrophage exosomes promote the activation of hepatic stellate cells and the intervention study of total astragalus saponins combined with glycyrrhizic acid. Anat Rec, 306 (12) (2023), pp. 3097-3105
[160]
W.S. Kamoun, A. Karaa, N. Kresge, S.M. Merkel, K. Korneszczuk, M.G. Clemens. LPS inhibits endothelin-1-induced endothelial NOS activation in hepatic sinusoidal cells through a negative feedback involving caveolin-1. Hepatology, 43 (1) (2006), pp. 182-190
[161]
W. Kwok, M.G. Clemens. Targeted mutation of Cav-1 alleviates the effect of endotoxin in the inhibition of ET-1-mediated eNOS activation in the liver. Shock, 33 (4) (2010), pp. 392-398
[162]
K. McDaniel, L. Huang, K. Sato, N. Wu, T. Annable, T. Zhou, et al. The Let-7/Lin 28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. J Biol Chem, 292 (27) (2017), pp. 11336-11347
[163]
A. Li, L. Dong, M.L. Duan, K. Sun, Y.Y. Liu, M.X. Wang, et al. Emodin improves lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Microcirculation, 20 (7) (2013), pp. 617-628
[164]
Q. Lv, Y. Xing, J. Liu, D. Dong, Y. Liu, H. Qiao, et al. Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation. Acta Pharm Sin B, 11 (9) (2021), pp. 2880-2899
[165]
Z. Yu, B. Yue, L. Ding, X. Luo, Y. Ren, J. Zhang, et al. Activation of PXR by alpinetin contributes to abrogate chemically induced inflammatory bowel disease. Front Pharmacol, 11 (2020), p. 474
[166]
M.Y. Li, Z.H. Zhang, Z. Wang, H.X. Zuo, J.Y. Wang, Y. Xing, et al. Convallatoxin protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB signaling through activation of PPARγ. Pharmacol Res, 147 (2019), p. 104355
[167]
H.M. Li, Y.Y. Wang, H.D. Wang, W.J. Cao, X.H. Yu, D.X. Lu, et al. Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms. Acta Pharmacol Sin, 32 (11) (2011), pp. 1364-1372
[168]
C.S. Pan, Y.H. Liu, Y.Y. Liu, Y. Zhang, K. He, X.Y. Yang, et al. Salvianolic acid B ameliorates lipopolysaccharide-induced albumin leakage from rat mesenteric venules through Src-regulated tanscelluar pathway and paracellular pathway. PLoS One, 10 (5) (2015), p. e0126640
[169]
J. Han, W. Li, G. Shi, Y. Huang, X. Sun, N. Sun, et al. Atractylenolide III improves mitochondrial function and protects against ulcerative colitis by activating AMPK/SIRT1/PGC-1α. Mediators Inflamm, 2022 (2022), p. 9129984
[170]
Y. Qu, X. Li, F. Xu, S. Zhao, X. Wu, Y. Wang, et al. Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB axis. Front Immunol, 12 (2021), p. 679897
[171]
S. Xie, T. Yang, Z. Wang, M. Li, L. Ding, X. Hu, et al. Astragaloside IV attenuates sepsis-induced intestinal barrier dysfunction via suppressing RhoA/NLRP 3 inflammasome signaling. Int Immunopharmacol, 78 (2020), p. 106066
[172]
J. Mao, J. Zhang, C.S.P. Lam, M. Zhu, C. Yao, S. Chen, et al. Qishen Yiqi dripping pills for chronic ischaemic heart failure: results of the CACT-IHF randomized clinical trial. ESC Heart Fail, 7 (6) (2020), pp. 3881-3890
[173]
C. Li, Q. Li, J. Xu, W. Wu, Y. Wu, J. Xie, et al. The efficacy and safety of compound danshen dripping pill combined with percutaneous coronary intervention for coronary heart disease. Evid Based Complement Alternat Med, 2020 (2020), p. 5067137
[174]
X. Li, J. Zhang, J. Huang, A. Ma, J. Yang, W. Li, et al. A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of qili qiangxin capsules in patients with chronic heart failure. J Am Coll Cardiol, 62 (12) (2013), pp. 1065-1072
[175]
C. Mao, X.H. Fu, J.Q. Yuan, Z.Y. Yang, V.C. Chung, Y. Qin, et al. Tong-Xin-Luo capsule for patients with coronary heart disease after percutaneous coronary intervention. Cochrane Database Syst Rev (5) (2015), p. CD010237
[176]
L. Wu, H. Song, C. Zhang, A. Wang, B. Zhang, C. Xiong, et al. Efficacy and safety of panax notoginseng saponins in the treatment of adults with ischemic stroke in china: a randomized clinical trial. JAMA Netw Open, 6 (6) (2023), p. e2317574
[177]
M. Guo, P. Wang, J. Du, C. Fu, Q. Yang, Z. Gao, et al. Xinyue capsule in patients with stable coronary artery disease after percutaneous coronary intervention: a multicenter, randomized, placebo-controlled trial. Pharmacol Res, 158 (2020), p. 104883
[178]
S. Xian, Z. Yang, J. Lee, Z. Jiang, X. Ye, L. Luo, et al.A randomized, double-blind, multicenter, placebo-controlled clinical study on the efficacy and safety of Shenmai injection in patients with chronic heart failure. J Ethnopharmacol, 186 (2016), pp. 136-142
[179]
J. Xue, Y. Xu, Y. Deng, F. Li, F. Liu, L. Liu, et al. The efficacy and safety of Xinmailong injection in patients with chronic heart failure: a multicenter randomized double-blind placebo-controlled trial. J Altern Complement Med, 25 (8) (2019), pp. 856-860
[180]
Y. Lu, Y. Yan, X. Liu. Effects of alprostadil combined with tanshinone IIa injection on microcirculation disorder, outcomes, and cardiac function in AMI patients after PCI. Ann Palliat Med, 10 (1) (2021), pp. 97-103
[181]
N. Venketasubramanian, S.H. Young, S.S. Tay, T. Umapathi, A.Y. Lao, H.H. Gan, et al. CHInese medicine NeuroAiD efficacy on stroke recovery-extension study (CHIMES-E): a multicenter study of long-term efficacy. Cerebrovasc Dis, 39 (5-6) (2015), pp. 309-318
[182]
A. Karimi, S. Pourreza, M. Vajdi, A. Mahmoodpoor, S. Sanaie, M. Karimi, et al. Evaluating the effects of curcumin nanomicelles on clinical outcome and cellular immune responses in critically ill sepsis patients: a randomized, double-blind, and placebo-controlled trial. Front Nutr, 9 (2022), p. 1037861
[183]
S. Liu, C. Yao, J. Xie, H. Liu, H. Wang, Z. Lin, et al. Effect of an herbal-based injection on 28-day mortality in patients with sepsis: the EXIT-SEP randomized clinical trial. JAMA Intern Med, 183 (7) (2023), pp. 647-655
[184]
S. Wang, G. Liu, L. Chen, X. Xu, T. Jia, C. Zhu, et al. Effects of Shenfu injection on sublingual microcirculation in septic shock patients: a randomized controlled trial. Shock, 58 (3) (2022), pp. 196-203
[185]
X. Wu, C. He, C. Liu, X. Xu, C. Chen, H. Yang, et al. Mechanisms of JinHong formula on treating sepsis explored by randomized controlled trial combined with network pharmacology. J Ethnopharmacol, 305 (2023), p. 116040
[186]
C. Fleischmann-Struzek, L. Mellhammar, N. Rose, A. Cassini, K.E. Rudd, P. Schlattmann, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med, 46 (8) (2020), pp. 1552-1562
[187]
K.E. Rudd, S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet, 395 (10219) (2020), pp. 200-211
[188]
M. Singer, C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315 (8) (2016), pp. 801-810
AI Summary AI Mindmap
PDF(5219 KB)

Accesses

Citations

Detail

Sections
Recommended

/