Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases

Shuang Liu, Shuo Yang, Biljana Blazekovic, Lu Li, Jidan Zhang, Yi Wang

PDF(4184 KB)
PDF(4184 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 13-26. DOI: 10.1016/j.eng.2023.11.017
Research
Review

Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases

Author information +
History +

Abstract

Infectious diseases are a global public health problem, with emerging and re-emerging infectious diseases on the rise worldwide. Therefore, their prevention and treatment are still major challenges. Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids, glucose, and energy. Bile acids have historically been utilized as first-line, valuable therapeutic agents for related metabolic and hepatobiliary diseases. Notably, bile acids are the major active ingredients of cow bezoar and bear bile, which are commonly used traditional Chinese medicines (TCMs) with the therapeutic effects of clearing heat, detoxification, and relieving wind and spasm. In recent years, the promising performance of bile acids against infectious diseases has attracted attention from the scientific community. This paper reviews for the first time the biological activities, possible mechanisms, production routes, and potential applications of bile acids in the treatment and prevention of infectious diseases. Compared with previous reviews, we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality. In addition, to ensure a stable supply of bile acids at affordable prices, it is necessary to clarify the biosynthesis of bile acids in vivo, which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis, biosynthesis, and chemoenzymatic synthesis. Finally, we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids. The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.

Graphical abstract

Keywords

Bile acids / Infectious diseases / Bioactivities / Mechanisms / Anti-infective agents

Cite this article

Download citation ▾
Shuang Liu, Shuo Yang, Biljana Blazekovic, Lu Li, Jidan Zhang, Yi Wang. Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases. Engineering, 2024, 38(7): 13‒26 https://doi.org/10.1016/j.eng.2023.11.017

References

[[1]]
Antabe R, Ziegler B. Diseases, emerging and infectious. In: Kobayashi A, editor. International encyclopedia of human geography. Amsterdam: Elsevier; 2019. p. 389-91.
[[2]]
G. Arora, A. Sajid, Y.M. Chuang, Y. Dong, A. Gupta, K. Gambardella, et al. Immunomodulation by mosquito salivary protein AgSAP contributes to early host infection by plasmodium. MBio, 12 (6) (2021), Article e0309121
[[3]]
K. Khanna, S. Sabharwal. Spinal tuberculosis: a comprehensive review for the modern spine surgeon. Spine J, 19 (11) (2019), pp. 1858-1870
[[4]]
C.L. Hutson, A.V. Kondas, M.R. Mauldin, J.B. Doty, I.M. Grossi, C.N. Morgan, et al. Pharmacokinetics and efficacy of a potential Smallpox therapeutic, brincidofovir, in a lethal Monkeypox virus animal model. MSphere, 6 (1) (2021), pp. e00927-1020
[[5]]
E. Takahashi, S. Ochi, T. Mizuno, D. Morita, M. Morita, M. Ohnishi, et al. Virulence of cholera toxin gene-positive Vibrio cholerae non-O1/non-O 139 strains isolated from environmental water in Kolkata. India. Front Microbiol, 12 (2021), Article 726273
[[6]]
J. Klunk, T.P. Vilgalys, C.E. Demeure, X. Cheng, M. Shiratori, J. Madej, et al. Evolution of immune genes is associated with the Black Death. Nature, 611 (7935) (2022), pp. 312-319
[[7]]
J.A. Choreño-Parra, L.A. Jiménez-Álvarez, A. Cruz-Lagunas, T.S. Rodríguez-Reyna, G. Ramírez-Martínez, M. Sandoval-Vega, et al. Clinical and immunological factors that distinguish COVID-19 from pandemic influenza A (H1N1). Front Immunol, 12 (2021), p. 593595
[[8]]
L.H. Leung, H.D. Pan, Y.F. Huang, X.X. Fan, W.Y. Wang, F. He, et al. The scientific foundation of Chinese herbal medicine against COVID-19. Engineering, 6 (10) (2020), pp. 1099-1107
[[9]]
Y. Ma, M. Chen, Y. Guo, J. Liu, W. Chen, M. Guan, et al. Prevention and treatment of infectious diseases by traditional Chinese medicine: a commentary. APMIS, 127 (5) (2019), pp. 372-384
[[10]]
X. Luan, L.J. Zhang, X.Q. Li, K. Rahnam, H. Zhang, H.Z. Chen, et al. Compound-based Chinese medicine formula: from discovery to compatibility mechanism. J Ethnopharmacol, 254 (2020), p. 112687
[[11]]
C. Yu, Z. Huang, C. Xiu, S. Wu, C. Peng, F. Xiong, et al. Chinese dictionary of clinical drugs:volumes of Chinese medicine formulas. China Medical Science Press, Beijing (2018)
[[12]]
Y. Yang, J. Sun, G. Wang, Y. Peng. Research progress on the material basis and pharmacological effects of Pien Tze Huang. Acta Pharm Sin, 8 (2023), pp. 2155-2167
[[13]]
Y. Wu. Research on the quality analysis method of Niuhuang Jiedu Wan. Chin Sci Technol Periodicals Database Med Health, 4 (2023), pp. 0154-0157
[[14]]
R. Wu, J. Liang, Y. Liang, X. Li. A spectrum-effect based method for screening antibacterial constituents in Niuhuang Shangqing Pill using comprehensive two-dimensional liquid chromatography. J Chromatogr B, 1191 (2022), Article 123121
[[15]]
Y. Wang, W. Wang, W. Qiao. Determination of the concentration of bile acid in Meihua Dianshe Wan. Lishizhen Med Mater Med Res, 11 (6) (2000), pp. 493-494
[[16]]
Q. Ma, B. Lei, R. Chen, B. Liu, W. Lu, H. Jiang, et al. Liushen Capsules, a promising clinical candidate for COVID-19, alleviates SARS-CoV-2-induced pulmonary in vivo and inhibits the proliferation of the variant virus strains in vitro. Chin Med, 17 (1) (2022), p. 40
[[17]]
M. Deng, C. Zhao, X. Peng, J. Yang. Study on quality standard of bear gall pill. China Pharm, 23 (3) (2012), p. 3
[[18]]
M. Ding, Y. Jiang, W. Gao, M. Li, L. Chen, H. Yang, et al. Characterization and quantification of chemical constituents in Angong Niuhuang Pill using ultra-high performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal, 228 (2023), p. 115309
[[19]]
J. Guo, H. Hu, X. Wang, C. Cheng, H. He, P. Wu. Experimental research of antiviral effects of xiongdaniuhuang capsules. Chin Arch Tradit Chin Med, 21 (6) (2003), pp. 906-907
[[20]]
Y. Zhao, Z. Xu, T. Wang, Y. Li, L. Yang, S. Liu, et al. Simultaneous quantitation of 23 bioactive compounds in Tanreqing Capsule by high-performance liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr, 33 (7) (2019), p. e4531
[[21]]
C. Hu, J. Li, Y.S. Tan, Y. Liu, C. Bai, J. Gao, et al. Tanreqing Injection attenuates macrophage activation and the inflammatory response via the lncRNA-SNHG1/HMGB 1 axis in lipopolysaccharide-induced acute lung injury. Front Immunol, 13 (2022), p. 820718
[[22]]
Y. Xiang, F. Zheng, Q. Zhang, R.J. Zhang, H. Pan, Z. Pang, et al. Tanreqing injection regulates cell function of hypoxia-induced human pulmonary artery smooth muscle cells (HPASMCs) through TRPC1/CX3CL 1 signaling pathway. Oxid Med Cell Longev, 2022 (2022), p. 3235102
[[23]]
K. Cui, W. Yang, S. Liu, D. Li, L. Li, X. Ren, et al. Synergistic inhibition of MRSA by chenodeoxycholic acid and carbapenem antibiotics. Antibiotics, 12 (1) (2022), p. 71
[[24]]
K. Cui, W. Yang, Z. Liu, G. Liu, D. Li, Y. Sun, et al. Chenodeoxycholic acid and amikacin combination enhance eradication of Staphylococcus aureus. Microbiol Spectr, 11 (1) (2023), p. e0243022
[[25]]
O. Chávez-Talavera, A. Tailleux, P. Lefebvre, B. Staels. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology, 152 (7) (2017), pp. 1679-1694
[[26]]
T.Y. Jiao, Y.D. Ma, X.Z. Guo, Y.F. Ye, C. Xie. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol Sin, 43 (5) (2022), pp. 1103-1119
[[27]]
R.A. Shah, K.V. Kowdley. Current and potential treatments for primary biliary cholangitis. Lancet Gastroenterol Hepatol, 5 (3) (2020), pp. 306-315
[[28]]
L. Pan, Z. Yu, X. Liang, J. Yao, Y. Fu, X. He, et al. Sodium cholate ameliorates nonalcoholic steatohepatitis by activation of FXR signaling. Hepatol Commun, 7 (2) (2023), p. e0039
[[29]]
S. Fiorucci, E. Distrutti. Chenodeoxycholic acid: an update on its therapeutic applications. Handb Exp Pharmacol, 256 (2019), pp. 265-282
[[30]]
Y. Polak, B.A.W. Jacobs, E.M. Kemper. Pharmacy compounded medicines for patients with rare diseases: lessons learned from chenodeoxycholic acid and cholic acid. Front Pharmacol, 12 (2021), Article 758210
[[31]]
Z.M. Younossi, V. Ratziu, R. Loomba, M. Rinella, Q.M. Anstee, Z. Goodman, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet, 394 (10215) (2019), pp. 2184-2196
[[32]]
S. Fiorucci, E. Disreutti. The pharmacology of bile acids and their receptors. Handb Exp Pharmacol, 256 (2019), pp. 3-18
[[33]]
T.M. Šarenac, M. Mikov. Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front Pharmacol, 9 (2018), p. 939
[[34]]
KEGG PATHWAY Database [Internet]. Kyoto: KEGG; 2018 Aug 10 [cited 2023 Mar 20]. Available from: https://www.kegg.jp/kegg/pathway.html.
[[35]]
F. Tonin, I.W.C.E. Arends. Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review. Beilstein J Org Chem, 14 (2018), pp. 470-483
[[36]]
M. Watanabe, S. Fukiya, A. Yokota. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents. J Lipid Res, 58 (6) (2017), pp. 1143-1152
[[37]]
P. Schnfeld, F. Meyer. What the (abdominal) surgeon needs to know on novel insights regarding cholic acids and their interaction with the intestinal microbioma. Z Gastroenterol, 58 (3) (2020), pp. 245-253
[[38]]
A. Floreani, I. Franceschet, L. Perini, N. Cazzagon, M.E. Gershwin, C. Bowlus. New therapies for primary biliary cirrhosis. Clin Rev Allergy Immunol, 48 (2-3) (2015), pp. 263-272
[[39]]
E. Alejandro. Physiology of bile secretion. World J Gastroenterol, 14 (37) (2008), pp. 5641-5649
[[40]]
X. Zheng, T. Chen, R. Jiang, A. Zhao, Q. Wu, J. Kuang, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab, 33 (4) (2021), pp. 791-803
[[41]]
C.X. Li, X.Q. Wang, F.F. Cheng, X. Yan, J. Luo, Q.G. Wang. Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro. Neural Regen Res, 14 (11) (2019), pp. 1941-1949
[[42]]
T. Yang, T. Shu, G. Liu, H. Mei, X. Zhu, X. Huang, et al. Quantitative profiling of 19 bile acids in rat plasma, liver, bile and different intestinal section contents to investigate bile acid homeostasis and the application of temporal variation of endogenous bile acids. J Steroid Biochem Mol Biol, 172 (2017), pp. 69-78
[[43]]
A.F. Hofmann, L.R. Hagey. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res, 55 (8) (2014), pp. 1553-1595
[[44]]
D.Q. Wang, M.C. Carey. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review. World J Gastroenterol, 20 (29) (2014), pp. 9952-9975
[[45]]
L.R. Hagey, T. Iida, S. Ogawa, Y. Adachi, M. Une, K. Mushiake, et al. Biliary bile acids in birds of the cotingidae family: taurine-conjugated (24R,25R)-3α7α24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α7α-dihydroxy-5β-cholestan-27-oic acid. Steroids, 76 (10-11) (2011), pp. 1126-1135
[[46]]
R. Satoh, H. Ogata, T. Saito, B. Zhou, K. Omura, S. Kurabuchi, et al. Two major bile acids in the hornbills, (24R,25S)-3α7α24-trihydroxy-5β-cholestan-27-oyl taurine and its 12α-hydroxy derivative. Lipids, 51 (6) (2016), pp. 757-768
[[47]]
S. Kuroki, C.D. Schteingart, L.R. Hagey, B.I. Cohen, E.H. Mosbach, S.S. Rossi, et al. Bile salts of the west Indian manatee, trichechus manatus latirostris: novel bile alcohol sulfates and absence of bile acids. J Lipid Res, 29 (4) (1988), pp. 509-522
[[48]]
L.R. Hagey, N. Vidal, A.F. Hofmann, M.D. Krasowski. Complex evolution of bile salts in birds. Auk, 127 (4) (2010), pp. 820-831
[[49]]
T. Li, J.Y. Chiang. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev, 66 (4) (2014), pp. 948-983
[[50]]
Y. Zhang, C. LaCerte, S. Kansra, J.P. Jackson, K.R. Brouwer, J.E. Edwards. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal invitro cell models. Pharmacol Res Perspect, 5 (6) (2017), p. e00368
[[51]]
M. Kusaczuk. Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives. Cells, 8 (12) (2019), p. 1471
[[52]]
K. Khalaf, P. Tornese, A. Cocco, A. Albanese. Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener, 11 (1) (2022), p. 33
[[53]]
L. Zangerolamo, J.F. Vettorazzi, L.R. Rosa, E.M. Carneiro, H.C.L. Barbosa. The bile acid TUDCA and neurodegenerative disorders: an overview. Life Sci, 272 (2021), Article 119252
[[54]]
Y. Wu, A. Zhou, L. Tang, Y. Lei, B. Tang, L. Zhang. Bile acids: key regulators and novel treatment targets for type 2 diabetes. J Diabetes Res, 2020 (2020), p. 6138438
[[55]]
E.R. McGlone, S.R. Bloom. Bile acids and the metabolic syndrome. Ann Clin Biochem, 56 (3) (2019), pp. 326-337
[[56]]
S. Fiorucci, C. Di Giorgio, E. Distrutti. Obeticholic acid: an update of its pharmacological activities in liver disorders. Handb Exp Pharmacol, 256 (2019), pp. 283-295
[[57]]
R.W. Chapman, K.D. Lynch. Obeticholic acid—a new therapy in PBC and NASH. Br Med Bull, 133 (1) (2020), pp. 95-104
[[58]]
A. Carino, F. Moraca, B. Fiorillo, S. Marchianò, V. Sepe, M. Biagioli, et al. Hijacking SARS-CoV-2/ACE 2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain. Front Chem, 8 (2020), p. 572885
[[59]]
M. Biagioli, S. Marchianò, R. Roselli, C. Di Giorgio, R. Bellini, M. Bordoni, et al. GLP-1 mediates regulation of colonic ACE 2 expression by the bile acid receptor GPBAR1 in inflammation. Cells, 11 (7) (2022), p. 1187
[[60]]
A.R. Bourgonje, A.E. Abdulle, W. Timens, J.L. Hillebrands, F.J. Navis, S.J. Gordijn, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol, 251 (3) (2020), pp. 228-248
[[61]]
G.E. Batiha, H.M. Al-Kuraishy, A.I. Al-Gareeb, F.S. Youssef, S.A. El-Sherbeni, W.A. Negm. A perspective study of the possible impact of obeticholic acid against SARS-CoV-2 infection. Inflammopharmacology, 31 (1) (2023), pp. 9-19
[[62]]
T. Brevini, M. Maes, G.J. Webb, B.V. John, C.D. Fuchs, G. Buescher, et al. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature, 615 (7950) (2023), pp. 134-142
[[63]]
P.X. Thuy, T.D.D. Bao, E.Y. Moon. Ursodeoxycholic acid ameliorates cell migration retarded by the SARS-CoV-2 spike protein in BEAS-2B human bronchial epithelial cells. Biomed Pharma, 150 (2022), p. 113021
[[64]]
S. Subramanian, T. Iles, S. Ikramuddin, C.J. Steer. Merit of an ursodeoxycholic acid clinical trial in COVID-19 patients. Vaccines, 8 (2) (2020), p. 320
[[65]]
M. Javanian, M. Barary, S. Ghebrehewet, V. Koppolu, V. Vasigala, S. Ebrahimpour. A brief review of influenza virus infection. J Med Virol, 93 (8) (2021), pp. 4638-4646
[[66]]
L. Luo, W. Han, J. Du, X. Yang, M. Duan, C. Xu, et al. Chenodeoxycholic acid from bile inhibits influenza A virus replication via blocking nuclear export of viral ribonucleoprotein complexes. Molecules, 23 (12) (2018), p. 3315
[[67]]
N. Li, Y. Zhang, S. Wu, R. Xu, Z. Li, J. Zhou, et al. Tauroursodeoxycholic acid (TUDCA) inhibits influenza A viral infection by disrupting viral proton channel M2. Sci Bull, 64 (3) (2019), pp. 180-188
[[68]]
A. Su, H. Wang, D. Zheng, Z. Wu. TUDCA inhibits HSV-1 replication by the modulating unfolded protein response pathway. J Med Virol, 92 (12) (2020), pp. 3628-3637
[[69]]
W. Murtaugh, L. Mahaman, B. Healey, H. Peters, B. Anderson, M. Tran, et al. Evaluation of three influenza neuraminidase inhibition assays for use in a public health laboratory setting during the 2011-2012 Influenza Season. Public Health Rep, 128 (Suppl 2) (2013), pp. 75-87
[[70]]
F. Kong, X. Niu, M. Liu, Q. Wang. Bile acids LCA and CDCA inhibited porcine deltacoronavirus replication in vitro. Vet Microbiol, 257 (2021), p. 109097
[[71]]
A.R. Weingarden, C. Chen, N. Zhang, C.T. Graiziger, P.I. Dosa, C.J. Steer, et al. Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J Clin Gastroenterol, 50 (8) (2016), pp. 624-630
[[72]]
J.A. Winston, A.J. Rivera, J. Cai, R. Thanissery, S.A. Montgomery, A.D. Patterson, et al. Ursodeoxycholic acid (UDCA) mitigates the host inflammatory response during Clostridioides difficile infection by altering gut bile acids. Infect Immun, 88 (6) (2020), pp. e00045-e120
[[73]]
Z. He, Y. Ma, S. Yang, S. Zhang, S. Liu, J. Xiao, et al. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. Microbiome, 10 (1) (2022), p. 79
[[74]]
X. Yang, K.R. Stein, H.C. Hang. Anti-infective bile acids bind and inactivate a Salmonella virulence regulator. Nat Chem Biol, 19 (1) (2023), pp. 91-100
[[75]]
S.G. Palace, K.E. Fryling, Y. Li, A.J. Wentworth, G. Traverso, Y.H. Grad. Identification of bile acid and fatty acid species as candidate rapidly bactericidal agents for topical treatment of gonorrhoea. J Antimicrob Chemother, 76 (10) (2021), pp. 2569-2577
[[76]]
S.J. Quillin, H.S. Seifert. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol, 16 (4) (2018), pp. 226-240
[[77]]
S.A. Rashid, N. Norman, S.H. Teo, W.Y. Tong, C.R. Leong, W.N. Tan, et al. Cholic acid: a novel steroidal uncompetitive inhibitor against β-lactamase produced by multidrug-resistant isolates. World J Microbiol Biotechnol, 37 (9) (2021), p. 152
[[78]]
Y. Sato, K. Atarashi, D.R. Plichta, Y. Arai, S. Sasajima, S.M. Kearney, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature, 599 (7885) (2021), pp. 458-464
[[79]]
C.G. Buffie, V. Bucci, R.R. Stein, P.T. McKenney, L. Ling, A. Gobourne, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature, 517 (7533) (2015), pp. 205-208
[[80]]
M. Begley, C.G.M. Gahan, C. Hill. The interaction between bacteria and bile. FEMS Microbiol Rev, 29 (4) (2005), pp. 625-651
[[81]]
A.M. Aguirre, N. Yalcinkaya, Q. Wu, A. Swennes, M.E. Tessier, P. Roberts, et al. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog, 17 (10) (2021), p. e1010015
[[82]]
R. Thanissery, J.A. Winston, C.M. Theriot. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe, 45 (2017), pp. 86-100
[[83]]
C.M. Theriot, W.A. Petri Jr. Role of microbiota-derived bile acids in enteric infections. Cell, 181 (7) (2020), pp. 1452-1454
[[84]]
C.C. Garcia, R. Guabiraba, F.M. Soriani, M.M. Teixeira. The development of anti-inflammatory drugs for infectious diseases. Discov Med, 10 (55) (2010), pp. 479-488
[[85]]
W.K. Ko, S.H. Lee, S.J. Kim, M.J. Jo, H. Kumar, I.B. Han, et al. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages. PLoS One, 12 (6) (2017), p. e0180673
[[86]]
F. Huang, C.M. Pariante, A. Borsini. From dried bear bile to molecular investigation: a systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain. Brain Behav Immun, 99 (2022), pp. 132-146
[[87]]
C. Zhou, Y. Wang, C. Li, Z. Xie, L. Dai. Amelioration of colitis by a gut bacterial consortium producing anti-inflammatory secondary bile acids. Microbiol Spectr, 11 (2) (2023), p. e0333022
[[88]]
J.B.J. Ward, N.K. Lajczak, O.B. Kelly, A.M. O’Dwyer, A.K. Giddam, J.N. Gabhann, et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol, 312 (6) (2017), pp. G550-G558
[[89]]
Y. Huang, L. Lin, Y. Yang, F. Duan, M. Yuan, B. Lou, et al. Effect of tauroursodeoxycholic acid on inflammation after ocular alkali burn. Int J Mol Sci, 23 (19) (2022), p. 11717
[[90]]
S. Hang, D. Paik, L. Yao, E. Kim, J. Trinath, J. Lu, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature, 576 (7785) (2019), pp. 143-148
[[91]]
D. Paik, L. Yao, Y. Zhang, S. Bae, G.D. D’Agostino, M. Zhang, et al. Human gut bacteria produce TH17-modulating bile acid metabolites. Nature, 603 (7903) (2022), pp. 907-912
[[92]]
H. Sun, Y. Guo, H. Wang, A. Yin, J. Hu, T. Yuan, et al. Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis. Gut, 72 (9) (2023), pp. 1664-1677
[[93]]
M. Luan, H. Wang, J. Wang, X. Zhang, F. Zhao, Z. Liu, et al. Advances in anti-inflammatory activity, mechanism and therapeutic spplication of ursolic acid. Mini Rev Med Chem, 22 (3) (2022), pp. 422-436
[[94]]
M.S. Shihabudeen, D. Roy, J. James, K. Thirumurugan. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance. Mol Cell Endocrinol, 414 (2015), pp. 19-28
[[95]]
S.R. Sinha, Y. Haileselassie, L.P. Nguyen, C. Tropini, M. Wang, L.S. Becker, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe, 27 (4) (2020), pp. 659-670
[[96]]
W. Zhao, J. Wang, X. Li, Y. Li, C. Ye. Deoxycholic acid inhibits Staphylococcus aureus-induced endometritis through regulating TGR5/PKA/NF-κB signaling pathway. Int Immunopharmacol, 118 (2023), p. 110004
[[97]]
C. Zhao, K. Wu, H. Hao, Y. Zhao, L. Bao, M. Qiu, et al. Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced mastitis through the TGR5-cAMP-PKA-NF-κB/NLRP 3 pathways in mice. NPJ Biofilms Microbiomes, 9 (1) (2023), p. 8
[[98]]
Y. Zheng, C. Yue, H. Zhang, H. Chen, Y. Liu, J. Li. Deoxycholic acid and lithocholic acid alleviate liver injury and inflammation in mice with Klebsiella pneumoniae-induced liver abscess and bacteremia. J Inflamm Res, 14 (2021), pp. 777-789
[[99]]
W. Li, S. Hang, Y. Fang, S. Bae, Y. Zhang, M. Zhang, et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe, 29 (9) (2021), pp. 1366-1377
[[100]]
T. Ikegami, A. Honda. Reciprocal interactions between bile acids and gut microbiota in human liver diseases. Hepatol Res, 48 (1) (2018), pp. 15-27
[[101]]
O. Ramírez-Pérez, V. Cruz-Ramón, P. Chinchilla-López, N. Méndez-Sánchez. The role of the gut microbiota in bile acid metabolism. Ann Hepatol, 16 (Suppl 1) (2017), pp. S15-S20
[[102]]
R. Sun, C. Xu, B. Feng, X. Gao, Z. Liu. Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol, 14 (2021), Article. 17562848211018098
[[103]]
S. Fiorucci, M. Biagioli, A. Zampella, E. Distrutti. Distrutti.Bile acids activated receptors regulate innate immunity. Front Immunol, 9 (2018), p. 1853
[[104]]
M. Biagioli, A. Carino. Signaling from intestine to the host: how bile acids regulate intestinal and liver immunity. Handb Exp Pharmacol, 256 (2019), pp. 95-108
[[105]]
S. Fiorucci, A. Zampella, P. Ricci, E. Distrutti, M. Biagioli. Immunomodulatory functions of FXR. Mol Cell Endocrinol, 551 (2022), p. 111650
[[106]]
M. Venkatesh, S. Mukherjee, H. Wang, H. Li, K. Sun, A.P. Benechet, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 41 (2) (2014), pp. 296-310
[[107]]
K. Huang, S. Mukherjee, V. DesMarais, J.M. Albanese, E. Rafti, A. Draghi Ii, et al. Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. Pediatr Res, 83 (5) (2018), pp. 1031-1040
[[108]]
Y.M. Shah, X. Ma, K. Morimura, I. Kim, F.J. Gonzalez. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-κB target gene expression. Am J Physiol Gastrointest Liver Physiol, 292 (4) (2007), pp. G1114-G1122
[[109]]
J. Terc, A. Hansen, L. Alston, S.A. Hirota. Pregnane X receptor agonists enhance intestinal epithelial wound healing and repair of the intestinal barrier following the induction of experimental colitis. Eur J Pharm Sci, 55 (2014), pp. 12-19
[[110]]
J. Cheng, Y.M. Shah, F.J. Gonzalez. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci, 33 (6) (2012), pp. 323-330
[[111]]
T. Korn, E. Bettelli, M. Oukka, V.K. Kuchroo. IL-17 and Th17 cells. Annu Rev Immunol, 27 (1) (2009), pp. 485-517
[[112]]
S. Huang, D. Paik, L. Yao, E. Kim, J. Trinath, J. Lu, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature, 576 (7785) (2019), pp. 143-148
[[113]]
X. Wang, I.S. Mohammad, L. Fan, Z. Zhao, M. Nurunnabi, M.A. Sallam, et al. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B, 11 (8) (2021), pp. 2585-2604
[[114]]
N. Jiao, S.S. Baker, A. Chapa-Rodriguez, W. Liu, C.A. Nugent, M. Tsompana, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut, 67 (10) (2018), pp. 1881-1891
[[115]]
S. Scalia, J.R. Williams, J.H. Shim, B. Law, E.D. Morgan. Supercritical fluid extraction of bile acids from bovine bile raw materials. Chromatographia, 48 (11-12) (1998), pp. 785-789
[[116]]
Zhou Y. Study on the operation of non-vessel fistula of black bear [dissertation]. Harbin: Northeast Forestry University; 2012. Chinese.
[[117]]
B. Struecker, K. Hillebrandt, N. Raschzok, K. Jöhrens, A. Butter, P. Tang, et al. Implantation of a tissue-engineered neo-bile duct in domestic pigs. Eur Surg Res, 56 (1-2) (2016), pp. 61-75
[[118]]
P. Li, S. Hasi, H. Guan, J. Cao. Abstraction of CDCA and TCDCA from chicken bile and study on their antibacterial effects. J Inner Mongolia Agric Univ, 21 (4) (2000), pp. 68-71
[[119]]
X. Liu, P. Li. Contrast on extraction techniques of taurocholic acid from cattle bile and sheep bile. J Baotou Medical College, 27 (5) (2011), pp. 3-7
[[120]]
B. Zan, X. Liu, Y. Zhao, R. Shi, X. Sun, T. Wang, et al. A validated surrogate analyte UPLC-MS/MS assay for quantitation of TUDCA, TCDCA, UDCA and CDCA in rat plasma: application in a pharmacokinetic study of cultured bear bile powder. Biomed Chromatogr, 34 (7) (2020), p. e4835
[[121]]
X.Y. Li, F.F. Su, C. Jiang, W. Zhang, F. Wang, Q. Zhu, et al. Efficacy evolution of bear bile and related research on components. China J Chin Mater Med, 47 (18) (2022), pp. 4846-4853
[[122]]
V.V. Kollerov, D. Monti, N.O. Deshcherevskaya, T.F. Lobastova, E.E. Ferrandi, A. Larovere, et al. Hydroxylation of lithocholic acid by selected actinobacteria and filamentous fungi. Steroids, 78 (3) (2013), pp. 370-378
[[123]]
D. Lou, Q. Long, C. Luo, X. Zhang, Z. Zhou, C. Zhang, et al. A novel NAD(H)-dependent 3α-HSDH with enhanced activity by magnesium or manganese ions. Int J Biol Macromol, 204 (2022), pp. 34-40
[[124]]
K.H. Kim, C.W. Lee, B.D. Pardhe, J. Hwang, H. Do, Y.M. Lee, et al. Crystal structure of an apo 7α-hydroxysteroid dehydrogenase reveals key structural changes induced by substrate and co-factor binding. J Steroid Biochem Mol Biol, 212 (2021), p. 105945
[[125]]
S. Grobe, A. Wszolek, H. Brundiek, M. Fekete, U.T. Bornscheuer. Bornscheuer.Highly selective bile acid hydroxylation by the multifunctional bacterial P450 monooxygenase CYP107D1 (OleP). Biotechnol Lett, 42 (5) (2020), pp. 819-824
[[126]]
S. Grobe, C.P.S. Badenhorst, T. Bayer, E. Hamnevik, S. Wu, C.W. Grathwol, et al. Engineering regioselectivity of a P 450 monooxygenase enables the synthesis of ursodeoxycholic acid via 7β-hydroxylation of lithocholic acid. Angew Chem Int Ed Engl, 60 (2) (2021), pp. 753-757
[[127]]
K. Lundell, R. Hansson, K. Wikvall. Cloning and expression of a pig liver taurochenodeoxycholic acid 6α-hydroxylase (CYP4A21): a novel member of the CYP4A subfamily. J Biol Chem, 276 (13) (2001), pp. 9606-9612
[[128]]
L.A. Thomas, A. King, G.L. French, G.M. Murphy, R.H. Dowling. Cholylglycine hydrolase and 7α-dehydroxylase optimum assay conditions in vitro and caecal enzyme activities ex vivo. Clin Chim Acta, 268 (1-2) (1997), pp. 61-72
[[129]]
S.N. Chanquia, E. Ripani, A. Baldessari, L.G. García. Bile acids: lipase-catalyzed synthesis of new hyodeoxycholic acid derivatives. Steroids, 140 (2018), pp. 45-51
[[130]]
M.C. Arendrup, T. Patterson. Multidrug-resistant candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis, 216 (Suppl 3) (2017), pp. S445-S451
[[131]]
L.A. Vale-Silva, D. Sanglard. Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS Yeast Res, 15 (4) (2015), p. fov025
[[132]]
C. Burks, A. Darby, L. Gómez Londoño, M. Momany, M.T. Brewer. Azole-resistant Aspergillus fumigatus in the environment: identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog, 17 (7) (2021), p. e1009711
[[133]]
A. Pérez-Cantero, L. López-Fernández, J. Guarro, J. Capilla. Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents, 5 (1) (2020), p. 105807
[[134]]
D. Patel, S.K. Ono, L. Bassit, K. Verma, F. Amblard, R.F. Schinazi. Assessment of a computational approach to predict drug resistance mutations for HIV, HBV and SARS-CoV-2. Molecules, 27 (17) (2022), p. 5413
[[135]]
Y. Yasutake, S.I. Hattori, N. Tamura, K. Matsude, S. Kohgo, K. Maeda, et al. Structural features in common of HBV and HIV-1 resistance against chirally-distinct nucleoside analogues entecavir and lamivudine. Sci Rep, 10 (1) (2020), p. 3021
[[136]]
R.M. Fairhurst, A.M. Dondorp. Artemisinin-resistant Plasmodium falciparum malaria. Microbiol Spectr, 4 (3) (2016), pp. 10-128
[[137]]
A. Nili, A. Farbod, A. Neishabouri, M. Mozafarihashijn, S. Tavakolpour, H. Mahmoudi. Remdesivir: a beacon of hope from Ebola virus disease to COVID-19. Rev Med Virol, 30 (6) (2020), pp. 1-13
[[138]]
A. Barbarossa, D. Iacopetta, M.S. Sinicropi, C. Franchini, A. Carocci. Recent advances in the development of thalidomide-related compounds as anticancer drugs. Curr Med Chem, 29 (1) (2022), pp. 19-40
[[139]]
G.J. Morgan, F.E. Davies. Role of thalidomide in the treatment of patients with multiple myeloma. Crit Rev Oncol Hematol, 88 (Suppl 1) (2013), pp. S14-S22
[[140]]
X.N. Chen, Y.N. Shen, P.Y. Li, Y.Q. Zou, H.Y. Hu. Bacterial biofilms: characteristics and combat strategies. Acta Pharm Sin, 53 (12) (2018), pp. 2040-2049
[[141]]
M. Jamal, W. Ahmad, S. Andleeb, F. Jalil, M. Imran, M.A. Nawaz, et al. Bacterial biofilm and associated infections. J Chin Med Assoc, 81 (1) (2018), pp. 7-11
[[142]]
P. Gupta, S. Sarkar, B. Das, S. Bhattacharjee, P. Tribedi. Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol, 198 (1) (2016), pp. 1-15
[[143]]
K. Ito, A. Okumura, J.S. Takeuchi, K. Watashi, R. Inoue, T. Yamauchi, et al. Dual agonist of farnesoid X receptor and takeda G protein-coupled receptor 5 Inhibits hepatitis B virus infection in vitro and in vivo. Hepatology, 74 (1) (2021), pp. 83-98
AI Summary AI Mindmap
PDF(4184 KB)

Accesses

Citations

Detail

Sections
Recommended

/