Properties and Characteristics of Regolith-Based Materials for Extraterrestrial Construction

Cheng Zhou, Yuyue Gao, Yan Zhou, Wei She, Yusheng Shi, Lieyun Ding, Changwen Miao

Engineering ›› 2024, Vol. 37 ›› Issue (6) : 173-197.

PDF(5428 KB)
PDF(5428 KB)
Engineering ›› 2024, Vol. 37 ›› Issue (6) : 173-197. DOI: 10.1016/j.eng.2023.11.019
Research
Review

Properties and Characteristics of Regolith-Based Materials for Extraterrestrial Construction

Author information +
History +

Abstract

The construction of extraterrestrial bases has become a new goal in the active exploration of deep space. Among the construction techniques, in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost, triggering the development of various types of extraterrestrial construction materials. A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization. Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment. Mechanical, thermal and optical, and radiation-shielding properties are considered. The influencing factors and optimization methods for these properties are analyzed. From the perspective of material properties, the existing challenges lie in the comprehensive, long-term, and real characterization of regolith-based construction materials. Correspondingly, the suggested future directions include the application of high-throughput characterization methods, accelerated durability tests, and conducting extraterrestrial experiments.

Graphical abstract

Keywords

Extraterrestrial construction / Characterization / Mechanical property / Thermal property / Optical property / Radiation-shielding

Cite this article

Download citation ▾
Cheng Zhou, Yuyue Gao, Yan Zhou, Wei She, Yusheng Shi, Lieyun Ding, Changwen Miao. Properties and Characteristics of Regolith-Based Materials for Extraterrestrial Construction. Engineering, 2024, 37(6): 173‒197 https://doi.org/10.1016/j.eng.2023.11.019

References

[1]
Z. Ouyang, C. Li, Y. Zou, H. Zhang, C. , J. Liu, et al. Primary scientific results of Chang’E-1 lunar mission. Sci China Earth Sci, 53 (11) (2010), pp. 1565-1581.
[2]
Z. Meng, X. Li, S. Chen, Y. Zheng, J. Shi, T. Wang, et al. Thermophysical features of shallow lunar crust demonstrated by typical Copernican craters using CE-2 CELMS data. IEEE J Sel Top Appl Earth Obs Remote Sens, 12 (7) (2019), pp. 2565-2574.
[3]
X. Wang, P. Zhu. Refinement of lunar TiO2 analysis with multispectral features of Chang’E-1 IIM data. Astrophys Space Sci, 343 (1) (2013), pp. 33-44.
[4]
J.J. Papike, S.B. Simon, J.C. Laul. The lunar regolith: chemistry, mineralogy, and petrology. Rev Geophys, 20 (4) (1982), pp. 761-826.
[5]
H.J. Moore, G.D. Clow, R.E. Hutton. A summary of Viking sample-trench analyses for angles of internal friction and cohesions. J Geophys Res Solid Earth, 87 (B12) (1982), pp. 10043-10050.
[6]
Smith M, Craig D, Herrmann N, Mahoney E, Krezel J, McIntyre N, et al. The Artemis program: an overview of NASA's activities to return humans to the moon. In: 2020 IEEE Aerospace Conference; 2020 March 7-14; Big Sky, MT, USA. Piscataway: IEEE; 2020. p. 1-10.
[7]
C. Li, C. Wang, Y. Wei, Y. Lin. China’s present and future lunar exploration program. Science, 365 (6450) (2019), pp. 238-239.
[8]
M.M. Battler, J.G. Spray. The Shawmere anorthosite and OB-1 as lunar highland regolith simulants. Planet Space Sci, 57 (14,15) (2009), pp. 2128-2131.
[9]
M. Jiang, L. Li, Y. Sun. Properties of TJ-1 lunar soil simulant. J Aerosp Eng, 25 (3) (2012), pp. 463-469.
[10]
G.H. Peters, W. Abbey, G.H. Bearman, G.S. Mungas, J.A. Smith, R.C. Anderson, et al. Mojave Mars simulant—characterization of a new geologic Mars analog. Icarus, 197 (2) (2008), pp. 470-479.
[11]
A. Rahim, A. Gulzar, A. Khan, Z. Rehman. Mars in situ resource utilization and sulfur concrete. P.J. Van Susante, A.D. Roberts (Earth and Space Eds.), 2021, American Society of Civil Engineers, Reston (2021), pp. 1231-1241.
[12]
I. Rosa, A. Coto, M.I. Allende, M.D. Lepech, D.J. Loftus. Designing biopolymer-bound regolith composites for maximum compressive strength. P.J. Van Susante, A.D. Roberts (Earth and Space Eds.), 2021, American Society of Civil Engineers, Reston (2021), pp. 200-214.
[13]
J. Gleaton, R. Xiao, Z. Lai, N. McDaniel, C.A. Johnstone, B. Burden, et al. Biocementation of Martian regolith simulant with in situ resources. R.B.Malla, R.K.Goldberg, A.D.Roberts (Earth and Space Eds.), 2018, American Society of Civil Engineers, Reston (2018), pp. 591-599.
[14]
A.D. Roberts, D.R. Whittall, R. Breitling, E. Takano, J.J. Blaker, S. Hay, et al. Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders. Mater Today Bio, 12 (2021), p. 100136.
[15]
K. Sakamoto, T. Wajima. Preparation of geopolymer cement from simulated lunar rock sand using alkali fusion. Int J GEOMATE, 18 (70) (2020), pp. 62-67.
[16]
S. Ma, S. Fu, Q. Wang, L. Xu, P. He, C. Sun, et al. 3D printing of damage-tolerant Martian regolith simulant-based geopolymer composites. Addit Manuf, 58 (2022), p. 103025.
[17]
K. Oh, T. Chen, R. Kou, H. Yi, Y. Qiao. Ultralow-binder-content thermoplastic composites based on lunar soil simulant. Adv Space Res, 66 (9) (2020), pp. 2245-2250.
[18]
K. Oh, H. Yi, T. Chen, B.J. Chow, R. Kou, Y. Qiao. Impact formation of ultralow-binder-content composite “lunar cement”. CEAS Space J, 13 (2) (2021), pp. 183-187.
[19]
J.M. Neves, S. Ramanathan, P. Suraneni, R. Grugel, A. Radlińska. Characterization, mechanical properties, and microstructural development of lunar regolith simulant-portland cement blended mixtures. Constr Build Mater, 258 (2020), p. 120315.
[20]
P. Lehner, P. Konečný, J. Katzer. Electrical resistivity and strength parameters of prismatic mortar samples based on standardized sand and lunar aggregate simulant. Buildings, 12 (4) (2022), p. 423.
[21]
H. Alkhateb, H. Almashaqbeh, J. Edmunson, M. Fiske, Y. Najjar, D. Stoddard. Optimizing magnesium phosphate binders with boric acid for additive construction applications. P.J. Van Susante, A.D. Roberts (Earth and Space Eds.), 2021, American Society of Civil Engineers, Reston (2021), pp. 13-28.
[22]
A.N. Scott, C. Oze. Constructing Mars: concrete and energy production from serpentinization products. Earth Space Sci, 5 (8) (2018), pp. 364-370.
[23]
W. Han, L. Ding, L. Cai, J. Zhu, H. Luo, T. Tang. Sintering of HUST-1 lunar regolith simulant. Constr Build Mater, 324 (2022), p. 126655.
[24]
S. Lim, M. Anand. Numerical modelling of the microwave heating behaviour of lunar regolith. Planet Space Sci, 179 (2019), p. 104723.
[25]
S. Lim, J. Bowen, G. Degli-Alessandrini, M. Anand, A. Cowley, V.L. Prabhu. Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers. Sci Rep, 11 (1) (2021), p. 2133.
[26]
Y.J. Kim, B.H. Ryu, H.W. Jin, J. Lee, H.S. Shin. Microwave sintering of lunar regolith simulant for manufacturing building elements. P.J. Van Susante, A.D. Roberts (Earth and Space Eds.), 2021, American Society of Civil Engineers, Reston (2021), pp. 985-991.
[27]
S. Gholami, X. Zhang, Y.J. Kim, Y.R. Kim, B. Cui, H.S. Shin, et al. Microwave sintering of a lunar regolith simulant for ISRU construction: multiscale characterization and finite element simulation. C.B.Dreyer, J.Littell (Earth and Space Eds.), 2022, American Society of Civil Engineers, Reston (2022), pp. 804-816.
[28]
R. Licheri, R. Orrù, E. Sani, A. Dell’Oro, G. Cao. Spark plasma sintering and optical characterization of lunar regolith simulant. Acta Astronaut, 201 (2022), pp. 164-171.
[29]
K.W. Farries, P. Visintin, S.T. Smith. Direct laser sintering for lunar dust control: an experimental study of the effect of simulant mineralogy and process parameters on product strength and scalability. Constr Build Mater, 354 (2022), p. 129191.
[30]
H. Zhao, L. Meng, S. Li, J. Zhu, S. Yuan, W. Zhang. Development of lunar regolith composite and structure via laser-assisted sintering. Front Mech Eng, 17 (1) (2022), p. 6.
[31]
S. Linke, A. Voß, M. Ernst, P.A. Taschner, J. Baasch, S. Stapperfend, et al. Two-dimensional laser melting of lunar regolith simulant using the MOONRISE payload on a mobile manipulator. 3D Print Addit Manuf, 9 (3) (2022), pp. 223-231.
[32]
B.C. Stewart, H.R. Doude, S. Mujahid, E.T. Fox, J.E. Edmunson, M.B. Abney, et al. Novel selective laser printing via powder bed fusion of ionic liquid harvested iron for martian additive manufacturing. J Mater Eng Perform, 31 (8) (2022), pp. 6060-6068.
[33]
P.F. Yuan, X. Zhou, H. Wu, L. Zhang, L. Guo, Y. Shi, et al. Robotic 3D printed lunar bionic architecture based on lunar regolith selective laser sintering technology. Archit Intell, 1 (1) (2022), p. 14.
[34]
R. Dou, W.Z. Tang, L. Wang, S. Li, W.Y. Duan, M. Liu, et al. Sintering of lunar regolith structures fabricated via digital light processing. Ceram Int, 45 (14) (2019), pp. 17210-17215.
[35]
M.I. Allende, B.A. Davis, J.E. Miller, E.L. Christiansen, M.D. Lepech, D.J. Loftus. Hypervelocity impact performance of biopolymer-bound soil composites for space construction. J Aerosp Eng, 33 (2) (2020), p. 04020001.
[36]
W. Zheng, G. Qiao. Microstructure, thermophysical, and mechanical properties of bulk glass prepared from molten lunar regolith simulant. Adv Space Res, 69 (8) (2022), pp. 3130-3139.
[37]
H. Su, Y. Hong, T. Chen, R. Kou, M. Wang, Y. Zhong, et al. Fatigue behavior of inorganic-organic hybrid “lunar cement”. Sci Rep, 9 (1) (2019), p. 2238.
[38]
Y.J. Kim, B.H. Ryu, H. Jin, J. Lee, H.S. Shin. Microstructural, mechanical, and thermal properties of microwave-sintered KLS-1 lunar regolith simulant. Ceram Int, 47 (19) (2021), pp. 26891-26897.
[39]
M. Fateri, R. Sottong, M. Kolbe, J. Gamer, M. Sperl, A. Cowley. Thermal properties of processed lunar regolith simulant. Int J Appl Ceram Technol, 16 (6) (2019), pp. 2419-2428.
[40]
C. Montes, K. Broussard, M. Gongre, N. Simicevic, J. Mejia, J. Tham, et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Adv Space Res, 56 (6) (2015), pp. 1212-1221.
[41]
A. Meurisse, C. Cazzaniga, C. Frost, A. Barnes, A. Makaya,M. Sperl. Neutron radiation shielding with sintered lunar regolith. Radiat Meas, 132 (2020), p. 106247.
[42]
J. Miller, L. Taylor, C. Zeitlin, L. Heilbronn, S. Guetersloh, M. DiGiuseppe, et al. Lunar soil as shielding against space radiation. Radiat Meas, 44 (2) (2009), pp. 163-167.
[43]
N.A. Schwadron, J.K. Wilson, M.D. Looper, A.P. Jordan, H.E. Spence, J.B. Blake, et al. Signatures of volatiles in the lunar proton albedo. Icarus, 273 (2016), pp. 25-35.
[44]
M.L. Litvak, I.G. Mitrofanov, A. Sanin, A. Malakhov, W.V. Boynton, G. Chin, et al. Global maps of lunar neutron fluxes from the LEND instrument. J Geophys Res Planets, 117 (E12) (2012), p. E00H22.
[45]
M.A. Al Zaman, N.J. Monira. Shielding effectiveness of different polymers and low-density hydrides in a combined radiation shield for crewed interplanetary space missions. Radiat Phys Chem, 205 (2023), p. 110706.
[46]
T. Nakamura, A.D. van Pelt, R.J. Gustafson, L. Clark. Solar thermal power system for oxygen production from lunar regolith. AIP Conf Proc, 969 (1) (2008), pp. 178-185.
[47]
M. Fateri, A. Cowley, M. Kolbe, O. Garcia, M. Sperl, S. Cristoforetti. Localized microwave thermal posttreatment of sintered samples of lunar simulant. J Aerosp Eng, 32 (4) (2019), p. 04019051.
[48]
S. Pilehvar, M. Arnhof, A. Erichsen, L. Valentini, A.L. Kjøniksen. Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers. J Mater Res Technol, 11 (2021), pp. 1506-1516.
[49]
R. Zhang, S. Zhou, F. Li. Preparation of geopolymer based on lunar regolith simulant at in-situ lunar temperature and its durability under lunar high and cryogenic temperature. Constr Build Mater, 318 (2022), p. 126033.
[50]
R. Zhang, S. Zhou, F. Li, Y. Bi, X. Zhu. Mechanical and microstructural characterization of carbon nanofiber-reinforced geopolymer nanocomposite based on lunar regolith simulant. J Mater Civ Eng, 34 (1) (2022), p. 04021387.
[51]
H.M. Brown, A.K. Boyd, B.W. Denevi, M.R. Henriksen, M.R. Manheim, M.S. Robinson, et al. Resource potential of lunar permanently shadowed regions. Icarus, 377 (2022), p. 114874.
[52]
Y. Shi, J. Zhao, L. Xiao, Y. Yang, J. Wang. An arid-semiarid climate during the Noachian-Hesperian transition in the Huygens region, Mars: evidence from morphological studies of valley networks. Icarus, 373 (2022), p. 114789.
[53]
J.P. Bibring, Y. Langevin, F. Poulet, A. Gendrin, B. Gondet, M. Berthé, et al. Perennial water ice identified in the south polar cap of Mars. Nature, 428 (6983) (2004), pp. 627-630.
[54]
C. Zhou, R. Chen, J. Xu, L. Ding, H. Luo, J. Fan, et al. In-situ construction method for lunar habitation: Chinese Super Mason. Autom Constr, 104 (2019), pp. 66-79.
[55]
N. Leach. 3D printing in space. Archit Des, 84 (6) (2014), pp. 108-113.
[56]
P.J. Van Susante, K. Zacny, M. Hedlund, J. Atkinson, N. Gelino, R. Mueller. Robotic Mars and lunar landing pad construction using in situ rocks. R.B. Malla, R.K. Goldberg, A.D. Roberts (Earth and Space Eds.), 2018, American Society of Civil Engineers, Reston (2018), pp. 268-280.
[57]
C. Zhou, B. Tang, L. Ding, P. Sekula, Y. Zhou, Z. Zhang. Design and automated assembly of planetary LEGO brick for lunar in-situ construction. Autom Constr, 118 (2020), p. 103282.
[58]
S.L. Taylor, A.E. Jakus, K.D. Koube, A.J. Ibeh, N.R. Geisendorfer, R.N. Shah, et al. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronaut, 143 (2018), pp. 1-8.
[59]
G. Cesaretti, E. Dini, X. de Kestelier, V. Colla, L. Pambaguian. Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronaut, 93 (2014), pp. 430-450.
[60]
N. Leach, A. Carlson, B. Khoshnevis, M. Thangavelu. Robotic construction by contour crafting: the case of lunar construction. Int J Archit Comput, 10 (3) (2012), pp. 423-438.
[61]
B.M. Willman, W.W. Boles, D.S. McKay, C.C. Allen. Properties of lunar soil simulant JSC-1. J Aerosp Eng, 8 (2) (1995), pp. 77-87.
[62]
M. Horányi, B. Walch, S. Robertson, D. Alexander. Electrostatic charging properties of Apollo 17 lunar dust. J Geophys Res Planets, 103 (E4) (1998), pp. 8575-8580.
[63]
Y. Zheng, S. Wang, Z. Ouyang, Y. Zou, J. Liu, C. Li, et al. CAS-1 lunar soil simulant. Adv Space Res, 43 (3) (2009), pp. 448-454.
[64]
V. Marzulli, F. Cafaro. Geotechnical properties of uncompacted DNA-1A lunar simulant. J Aerosp Eng, 32 (2) (2019), p. 04018153.
[65]
P. Reiss, L. Grill, S.J. Barber. Thermal extraction of volatiles from the lunar regolith simulant NU-LHT-2M: preparations for in-situ analyses on the moon. Planet Space Sci, 175 (2019), pp. 41-51.
[66]
E. Suescun-Florez, S. Roslyakov, M. Iskander, M. Baamer. Geotechnical properties of BP-1 lunar regolith simulant. J Aerosp Eng, 28 (5) (2015), p. 04014124.
[67]
B.H. Ryu, C.C. Wang, I. Chang. Development and geotechnical engineering properties of KLS-1 lunar simulant. J Aerosp Eng, 31 (1) (2018), p. 04017083.
[68]
C.C. Allen, K.M. Jager, R.V. Morris, D.J. Lindstrom, M.M. Lindstrom, J.P. Lockwood. JSC MARS-1: a Martian soil simulant. R.G. Galloway, S. Lokaj (Space and Robotics Eds.), 1998, American Society of Civil Engineers, Reston (1998), pp. 469-476.
[69]
J. Guan, A. Liu, K. Xie, Z. Shi, B. Kubikova. Preparation and characterization of Martian soil simulant NEU Mars-1. Trans Nonferrous Met Soc China, 30 (1) (2020), pp. 212-222.
[70]
K.M. Cannon, D.T. Britt, T.M. Smith, R.F. Fritsche, D. Batcheldor. Mars global simulant MGS-1: a Rocknest-based open standard for basaltic martian regolith simulants. Icarus, 317 (2019), pp. 470-478.
[71]
Graf JC. Lunar soils grain size catalog. Report. Houston: Lyndon B. Johnson Space Center; 1993 Mar. Report No.: NASA-RP-1265. Contract No.: 93N21663.
[72]
A. Scott, C. Oze, M.W. Hughes, S. Bevin, C. Wisbey. Performance of a magnesia silica cement for Martian construction. R.B. Malla, R.K. Goldberg, A.D. Roberts (Earth and Space Eds.), 2018, American Society of Civil Engineers, Reston (2018), pp. 629-636.
[73]
C. Li, K. Xie, A. Liu, Z. Shi. The preparation and characterization of NEU-1 lunar soil simulants. JOM, 71 (4) (2019), pp. 1471-1476.
[74]
Morris RV, Heiken G, Morris R, Score R. Handbook of lunar soils. Houston: Lyndon B. Johnson Space Center; 1983.
[75]
R. Rieder, T. Economou, H. Wänke, A. Turkevich, J. Crisp, J. Brückner, et al. The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science, 278 (5344) (1997), pp. 1771-1774.
[76]
R. Gellert, R. Rieder, R.C. Anderson, J. Brückner, B.C. Clark, G. Dreibus, et al. Chemistry of rocks and soils in Gusev crater from the alpha particle X-ray spectrometer. Science, 305 (5685) (2004), pp. 829-832.
[77]
B.C. Clark, A.K. Baird, R.J. Weldon, D.M. Tsusaki, L. Schnabel, M.P. Candelaria. Chemical composition of Martian fines. J Geophys Res Solid Earth, 87 (B12) (1982), pp. 10059-10067.
[78]
R. Rieder, R. Gellert, R.C. Anderson, J. Brückner, B.C. Clark, G. Dreibus, et al. Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science, 306 (5702) (2004), pp. 1746-1749.
[79]
C.S. Ray, S.T. Reis, S. Sen, J.S. O’Dell. JSC-1A lunar soil simulant: characterization, glass formation, and selected glass properties. J Non-Cryst Solids, 356 (44-49) (2010), pp. 2369-2374.
[80]
Schrader C, Rickman D, Mclemore C, Fikes J, Wilson S, Stoeser D, et al. Extant and extinct lunar regolith similants:modal analyses of NU-LHT-1M and -2m, OB-1, JSC-1, JSC-1A and -1AF, FJS-1, and MLS-1.In: Proceeding of Planetary and Terrestrial Mining Symposium (PTMSS)/Northern Centre for Advanced Technology, Inc. (NORCAT); 2008 Jun 9-11; Montreal, QC, Canada. 2008.
[81]
H.Y. McSween Jr, I.O. McGlynn, A.D. Rogers. Determining the modal mineralogy of Martian soils. J Geophys Res Planets, 115 (E7) (2010), Article E00F12.
[82]
D.L. Bish, D.F. Blake, D.T. Vaniman, S.J. Chipera, R.V. Morris, D.W. Ming, et al. X-ray diffraction results from Mars science laboratory: mineralogy of Rocknest at Gale crater. Science, 341 (6153) (2013), p. 1238932.
[83]
Z. Geng, L. Zhang, H. Pan, W. She, C. Zhou, H. Zhou, et al. In-situ solidification of alkali-activated lunar regolith: insights into the chemical and physical origins. J Cleaner Prod, 391 (2023), p. 136147.
[84]
A. Whittington, A. Parsapoor. Lower cost lunar bricks: energetics of melting and sintering lunar regolith simulants. New Space, 10 (2) (2022), pp. 193-204.
[85]
F. Zaccardi, E. Toto, M.G. Santonicola, S. Laurenzi. 3D printing of radiation shielding polyethylene composites filled with Martian regolith simulant using fused filament fabrication. Acta Astronaut, 190 (2022), pp. 1-13.
[86]
M. Fateri, S. Pitikaris, M. Sperl. Investigation on wetting and melting behavior of lunar regolith simulant for additive manufacturing application. Microgravity Sci Technol, 31 (2) (2019), pp. 161-167.
[87]
W. Zheng, G. Qiao. Mechanical behavior of the metal parts welded with extraterrestrial regolith simulant by the solar concentrator in ISRU & ISRF application. Adv Space Res, 65 (10) (2020), pp. 2303-2314.
[88]
S.D. Anderson, J. Thangavelautham. Solar-powered additive manufacturing in extraterrestrial environments. P.J. Van Susante, A.D. Roberts (Earth and Space Eds.), 2021, American Society of Civil Engineers, Reston (2021), pp. 732-744.
[89]
X.L. Phuah, H. Wang, B. Zhang, J. Cho, X. Zhang, H. Wang. Ceramic material processing towards future space habitat: electric current-assisted sintering of lunar regolith simulant. Materials, 13 (18) (2020), p. 4128.
[90]
H. Chen, G. Nie, Y. Li, X. Zong, S. Wu. Improving relative density and mechanical strength of lunar regolith structures via DLP-stereolithography integrated with powder surface modification process. Ceram Int, 48 (18) (2022), pp. 26874-26883.
[91]
B.A. Aguiar, A. Nisar, T. Thomas, C. Zhang, A. Agarwal. In-situ resource utilization of lunar highlands regolith via additive manufacturing using digital light processing. Ceram Int, 49 (11 Pt A) (2023), pp. 17283-17295.
[92]
C. Wang, H. Gong, H. Wu, Q. Jin, W. Wei, J. Liang, et al. Optimized sintering strategy for lunar regolith simulant particles bound via vat photopolymerization. Mater Chem Phys, 297 (2023), p. 127393.
[93]
C. Xiao, K. Zheng, S. Chen, N. Li, X. Shang, F. Wang, et al. Additive manufacturing of high solid content lunar regolith simulant paste based on vat photopolymerization and the effect of water addition on paste retention properties. Addit Manuf, 71 (2023), p. 103607.
[94]
R.E. Ferguson, E. Shafirovich. Aluminum-nickel combustion for joining lunar regolith ceramic tiles. Combust Flame, 197 (2018), pp. 22-29.
[95]
R.E. Ferguson, E. Shafirovich, J.G. Mantovani. Combustion joining of regolith tiles for in situ fabrication of launch/landing pads on the moon and Mars. R.B. Malla, R.K. Goldberg, A.D. Roberts (Earth and Space Eds.), 2018, American Society of Civil Engineers, Reston (2018), pp. 281-288.
[96]
J.A. Dominguez, J. Whitlow. Marangoni effect and its potential utilization in supporting lunar habitats and other extraterrestrial endeavors. Adv Space Res, 69 (5) (2022), pp. 2259-2267.
[97]
L. Karacasulu, D. Karl, A. Gurlo, C. Vakifahmetoglu. Cold sintering as a promising ISRU technique: a case study of Mars regolith simulant. Icarus, 389 (2023), p. 115270.
[98]
R. Calvo, P. Fuierer. Mechanical integrity of ceramic coatings on Kapton made by a dry aerosol deposition of lunar mare simulant. Int J Appl Ceram Technol, 20 (1) (2023), pp. 395-409.
[99]
A. Afrouzian, K.D. Traxel, A. Bandyopadhyay. Martian regolith—Ti6Al4V composites via additive manufacturing. Int J Appl Ceram Technol, 19 (6) (2022), pp. 2998-3006.
[100]
D. Karl, T. Duminy, P. Lima, F. Kamutzki, A. Gili, A. Zocca, et al. Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies. Acta Astronaut, 174 (2020), pp. 241-253.
[101]
D. Karl, F. Kamutzki, A. Zocca, O. Goerke, J. Guenster, A. Gurlo. Towards the colonization of Mars by in-situ resource utilization: slip cast ceramics from Martian soil simulant. PLoS One, 13 (10) (2018), p. e0204025.
[102]
R. Dikshit, N. Gupta, A. Dey, K. Viswanathan, A. Kumar. Microbial induced calcite precipitation can consolidate martian and lunar regolith simulants. PLoS One, 17 (4) (2022), p. e0266415.
[103]
A. Scott, C. Oze, M.W. Hughes. Magnesium-based cements for Martian construction. J Aerosp Eng, 33 (4) (2020), p. 04020019.
[104]
M. Troemner, E. Ramyar, R. Marrero, K. Mendu, G. Cusatis. Earth and Space Marscrete: a Martian concrete for additive construction applications utilizing in situ resources. P.J. Van Susante, A.D. Roberts (Eds.), 2021, American Society of Civil Engineers, Reston (2021), pp. 801-807.
[105]
J. Lee, K.Y. Ann, T.S. Lee, B.B. Mitikie. Bottom-up heating method for producing polyethylene lunar concrete in lunar environment. Adv Space Res, 62 (1) (2018), pp. 164-173.
[106]
L. Cai, L. Ding, H. Luo, X. Yi. Preparation of autoclave concrete from basaltic lunar regolith simulant: effect of mixture and manufacture process. Constr Build Mater, 207 (2019), pp. 373-386.
[107]
I. Rosa, M.D. Lepech, D.J. Loftus. Multiscale modeling and testing of protein-bound regolith and soils. R.B. Malla, R.K. Goldberg, A.D. Roberts (Earth and Space Eds.), 2018, American Society of Civil Engineers, Reston (2018), pp. 580-590.
[108]
M. Khedmati, X. Zhang, S. Gholami, B. Cui, Y.R. Kim, H.S. Shin, et al. Spark plasma sintering (SPS) for ISRU-oriented lunar soil simulant densification: microstructural evolution and mechanical characteristics. P.J. VanSusante, A.D.Roberts (Earth and Space Eds.), 2021, American Society of Civil Engineers, Reston (2021), pp. 1409-1418.
[109]
A. Meurisse, A. Makaya, C. Willsch, M. Sperl. Solar 3D printing of lunar regolith. Acta Astronaut, 152 (2018), pp. 800-810.
[110]
L. Caprio, A.G. Demir, B. Previtali, B.M. Colosimo. Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion. Addit Manuf, 32 (2020), p. 101029.
[111]
A. Zocca, M. Fateri, D. Al-Sabbagh, J. Günster. Investigation of the sintering and melting of JSC-2A lunar regolith simulant. Ceram Int, 46 (9) (2020), pp. 14097-14104.
[112]
S. Gholami, X. Zhang, Y.J. Kim, Y.R. Kim, B. Cui, H.S. Shin, et al. Hybrid microwave sintering of a lunar soil simulant: effects of processing parameters on microstructure characteristics and mechanical properties. Mater Des, 220 (2022), p. 110878.
[113]
S. Zhou, X. Zhu, C. Lu, F. Li. Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chin J Aeronaut, 35 (1) (2022), pp. 144-159.
[114]
M.H. Shahsavari, M.M. Karbala, S. Iranfar, V. Vandeginste. Martian and lunar sulfur concrete mechanical and chemical properties considering regolith ingredients and sublimation. Constr Build Mater, 350 (2022), p. 128914.
[115]
ASTM C39/C39M-21: Standard test method for compressive strength of cylindrical concrete specimens. American standard. West Conshohockens: American Society for Testing Material; 2021.
[116]
P.J. Collins, J. Edmunson, M. Fiske, A. Radlińska. Materials characterization of various lunar regolith simulants for use in geopolymer lunar concrete. Adv Space Res, 69 (11) (2022), pp. 3941-3951.
[117]
J.N. Mills, M. Katzarova, N.J. Wagner. Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization. Adv Space Res, 69 (1) (2022), pp. 761-777.
[118]
G. Xiong, X. Guo, S. Yuan, M. Xia, Z. Wang. The mechanical and structural properties of lunar regolith simulant based geopolymer under extreme temperature environment on the moon through experimental and simulation methods. Constr Build Mater, 325 (2022), p. 126679.
[119]
C. Buchner, R.H. Pawelke, T. Schlauf, A. Reissner, A. Makaya. A new planetary structure fabrication process using phosphoric acid. Acta Astronaut, 143 (2018), pp. 272-284.
[120]
S. Zhou, C. Lu, X. Zhu, F. Li. Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low alkali content. Engineering, 7 (11) (2021), pp. 1631-1645.
[121]
X. Zhang, S. Gholami, M. Khedmati, B. Cui, Y.R. Kim, Y.J. Kim, et al. Spark plasma sintering of a lunar regolith simulant: effects of parameters on microstructure evolution, phase transformation, and mechanical properties. Ceram Int, 47 (4) (2021), pp. 5209-5220.
[122]
A. Goulas, J.G.P. Binner, D.S. Engstrøm, R.A. Harris, R.J. Friel. Mechanical behaviour of additively manufactured lunar regolith simulant components. Proc Inst Mech Eng Part L, 233 (8) (2019), pp. 1629-1644.
[123]
C. Wang, H. Gong, W. Wei, H. Wu, X. Luo, N. Li, et al. Vat photopolymerization of low-titanium lunar regolith simulant for optimal mechanical performance. Ceram Int, 48 (20) (2022), pp. 29752-29762.
[124]
A.M. Lauermannová, I. Faltysová, M. Lojka, F. Antončík, D. Sedmidubský, Z. Pavlík, et al. Regolith- based magnesium oxychloride composites doped by graphene: novel high-performance building materials for lunar constructions. FlatChem, 26 (2021), p. 100234.
[125]
M. Liu, W. Tang, W. Duan, S. Li, R. Dou, G. Wang, et al. Digital light processing of lunar regolith structures with high mechanical properties. Ceram Int, 45 (5) (2019), pp. 5829-5836.
[126]
M. Fateri, A. Meurisse, M. Sperl, D. Urbina, H.K. Madakashira, S. Govindaraj, et al. Solar sintering for lunar additive manufacturing. J Aerosp Eng, 32 (6) (2019), p. 04019101.
[127]
H. Li, H. Meng, M. Lan, J. Zhou, M. Xu, X. Zhao, et al. Development of a novel material and casting method for in situ construction on Mars. Powder Technol, 390 (2021), pp. 219-229.
[128]
M. Dhakal, A. Scott, V. Shah, C. Oze, R. Dhakal, D. Clucas, et al. Magnesia-metakaolin regolith mortar for Martian construction. P.J. VanSusante, A.D.Roberts (Earth and Space Eds.), 2021, American Society of Civil Engineers, Reston (2021), pp. 808-817.
[129]
J. Osio-Norgaard, A.C. Hayes, G.L. Whiting. Sintering of 3D printable simulated lunar regolith magnesium oxychloride cements. Acta Astronaut, 183 (2021), pp. 227-232.
[130]
A. Biggerstaff, M. Lepech, D. Loftus. Determining the structuration of biopolymer-bound soil composite. Mater Struct, 55 (7) (2022), p. 190.
[131]
R. Dikshit, A. Dey, N. Gupta, S.C. Varma, I. Venugopal, K. Viswanathan, et al. Space bricks: from LSS to machinable structures via MICP. Ceram Int, 47 (10 Pt B) (2021), pp. 14892-14898.
[132]
H. Liao, J. Zhu, S. Chang, G. Xue, J. Pang, H. Zhu. Lunar regolith—AlSi10Mg composite fabricated by selective laser melting. Vacuum, 187 (2021), p. 110122.
[133]
C. Zhou, H. Tang, X. Li, X. Zeng, W. Yu, B. Mo, et al. Effects of ilmenite on the properties of microwave-sintered lunar regolith simulant. J Aerosp Eng, 34 (6) (2021), p. 06021006.
[134]
M.I. Allende, J.E. Miller, B.A. Davis, E.L. Christiansen, M.D. Lepech, D.J. Loftus. Prediction of micrometeoroid damage to lunar construction materials using numerical modeling of hypervelocity impact events. Int J Impact Eng, 138 (2020), p. 103499.
[135]
M.I. Allende, M.D. Lepech, D.J. Loftus. Scaling impact crater dimensions to predict micrometeorite damage of biopolymer-stabilized regolith. R.B. Malla, R.K. Goldberg, A.D. Roberts (Earth and Space Eds.), 2018, American Society of Civil Engineers, Reston (2018), pp. 612-620.
[136]
L. Qian, M. Li, Z. Zhou, H. Yang, X. Shi. Comparison of nano-indentation hardness to microhardness. Surf Coat Technol, 195 (2,3) (2005), pp. 264-271.
[137]
L. Song, J. Xu, H. Tang, J. Liu, J. Liu, X. Li, et al. Vacuum sintering behavior and magnetic transformation for high-Ti type basalt simulated lunar regolith. Icarus, 347 (2020), p. 113810.
[138]
J. Xu, X. Sun, H. Cao, H. Tang, H. Ma, L. Song, et al. 3D printing of hypothetical brick by selective laser sintering using lunar regolith simulant and ilmenite powders. Proc SPIE, 10842 (2019), p. 1084208.
[139]
X. Zhang, M. Khedmati, Y.R. Kim, H.S. Shin, J. Lee, Y.J. Kim, et al. Microstructure evolution during spark plasma sintering of FJS-1 lunar soil simulant. J Am Ceram Soc, 103 (2) (2020), pp. 899-911.
[140]
J.P. Williams, D.A. Paige, B.T. Greenhagen, E. Sefton-Nash. The global surface temperatures of the moon as measured by the Diviner Lunar Radiometer Experiment. Icarus, 283 (2017), pp. 300-325.
[141]
S. Pilehvar, M. Arnhof, R. Pamies, L. Valentini, A.L. Kjøniksen. Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. J Cleaner Prod, 247 (2020), p. 119177.
[142]
N. Caluk, A. Azizinamini. Introduction to the concept of modular blocks for lunar infrastructure. Acta Astronaut, 207 (2023), pp. 153-166.
[143]
B.Q. Li, J.W. Evans. Boundary element solution of heat convection-diffusion problems. J Comput Phys, 93 (2) (1991), pp. 255-272.
[144]
L. Song, J. Xu, S. Fan, H. Tang, X. Li, J. Liu, et al. Vacuum sintered lunar regolith simulant: pore-forming and thermal conductivity. Ceram Int, 45 (3) (2019), pp. 3627-3633.
[145]
P.M. Kost, S. Linke, B. Gundlach, A. Lethuillier, J. Baasch, E. Stoll, et al. Thermal properties of lunar regolith simulant melting specimen. Acta Astronaut, 187 (2021), pp. 429-437.
[146]
T. Jiang, X. Hu, H. Zhang, P. Ma, C. Li, X. Ren, et al. In situ lunar phase curves measured by Chang’E-4 in the Von Kármán Crater, South Pole-Aitken basin. Astron Astrophys, 646 (2021), p. A2.
[147]
X. Wang, S. Zhao. New insights into lithology distribution across the moon. J Geophys Res Planets, 122 (10) (2017), pp. 2034-2052.
[148]
Z. Yao, B. Hu, Q. Shen, A. Niu, Z. Jiang, P. Su, et al. Preparation of black high absorbance and high emissivity thermal control coating on Ti alloy by plasma electrolytic oxidation. Surf Coat Tech, 253 (2014), pp. 166-170.
[149]
E. Sani, D. Sciti, C. Capiani, L. Silvestroni. Colored zirconia with high absorbance and solar selectivity. Scr Mater, 186 (2020), pp. 147-151.
[150]
M.F. Palos, P. Serra, S. Fereres, K. Stephenson, R. González-Cinca. Lunar ISRU energy storage and electricity generation. Acta Astronaut, 170 (2020), pp. 412-420.
[151]
D. Hu, M. Li, Q. Li. A solar thermal storage power generation system based on lunar in-situ resources utilization: modeling and analysis. Energy, 223 (2021), p. 120083.
[152]
Williams H, van Ness R, Cloninger E, Vogel B, Crum R, Sanigepalli V, et al. Lunar array, mast, and power system (LAMPS) for deployable lunar power provision. In: AIAA SCITECH 2023 Forum; 2023 Jan 23-27; National Harbor, MD, USA. Reston: the American Institute of Aeronautics and Astronautics, Inc.; 2023. p. 1389.
[153]
E. Sani, D. Sciti, L. Silvestroni, A. Bellucci, S. Orlando, D.M. Trucchi. Tailoring optical properties of surfaces in wide spectral ranges by multi-scale femtosecond-laser texturing: a case-study for TaB2 ceramics. Opt Mater, 109 (2020), Article 110347.
[154]
National Academies of Sciences, Engineering, and Medicine. Space radiation and astronaut health: managing and communicating cancer risks. Washington, DC: the National Academies Press; 2021.
[155]
R.K. Tripathi, J.W. Wilson, F.F. Badavi, G. de Angelis. A characterization of the moon radiation environment for radiation analysis. Adv Space Res, 37 (9) (2006), pp. 1749-1758.
[156]
M.A. Al Zaman, Q.M.R. Nizam. Study on shielding effectiveness of a combined radiation shield for manned long termed interplanetary expeditions. J Space Saf Eng, 9 (1) (2022), pp. 83-89.
[157]
L.H. Heilbronn, T.B. Borak, L.W. Townsend, P.E. Tsai, C.A. Burnham, R.A. McBeth. Neutron yields and effective doses produced by Galactic Cosmic Ray interactions in shielded environments in space. Life Sci Space Res, 7 (2015), pp. 90-99.
[158]
T.T. Pham, M.S. El-Genk. Dose estimates in a lunar shelter with regolith shielding. Acta Astronaut, 64 (7,8) (2009), pp. 697-713.
[159]
M. Naito, S. Kodaira, R. Ogawara, K. Tobita, Y. Someya, T. Kusumoto, et al. Investigation of shielding material properties for effective space radiation protection. Life Sci Space Res, 26 (2020), pp. 69-76.
[160]
F. Horst, D. Boscolo, M. Durante, F. Luoni, C. Schuy, U. Weber. Thick shielding against galactic cosmic radiation: a Monte Carlo study with focus on the role of secondary neutrons. Life Sci Space Res, 33 (2022), pp. 58-68.
[161]
T.C. Slaba, A.A. Bahadori, B.D. Reddell, R.C. Singleterry, M.S. Clowdsley, S.R. Blattnig. Optimal shielding thickness for galactic cosmic ray environments. Life Sci Space Res, 12 (2017), pp. 1-15.
[162]
S. Guetersloh, C. Zeitlin, L. Heilbronn, J. Miller, T. Komiyama, A. Fukumura, et al. Polyethylene as a radiation shielding standard in simulated cosmic-ray environments. Nucl Instrum Methods Phys Res Sect B, 252 (2) (2006), pp. 319-332.
[163]
C. Zeitlin, L. Heilbronn, J. Miller, W. Schimmerling, L.W. Townsend, R.K. Tripathi, et al. The fragmentation of 510 MeV/nucleon iron-56 in polyethylene. II. comparisons between data and a model. Radiat Res, 145 (6) (1996), pp. 666-672.
[164]
A. Meurisse, J.C. Beltzung, M. Kolbe, A. Cowley, M. Sperl. Influence of mineral composition on sintering lunar regolith. J Aerosp Eng, 30 (4) (2017), p. 04017014.
[165]
J.M. Neves, P.J. Collins, R.P. Wilkerson, R.N. Grugel, A. Radlińska. Microgravity effect on microstructural development of tri-calcium silicate (C3S) paste. Front Mater, 6 (2019), p. 83.
[166]
K.L. Ferrone, A.B. Taylor, H. Helvajian. In situ resource utilization of structural material from planetary regolith. Adv Space Res, 69 (5) (2022), pp. 2268-2282.
[167]
W. Grandl. Lunar base 2015 stage 1 preliminary design study. Acta Astronaut, 60 (4-7) (2007), pp. 554-560.
[168]
J. Momi, T. Lewis, F. Alberini, M.E. Meyer, A. Alexiadis. Study of the rheology of lunar regolith simulant and water slurries for geopolymer applications on the moon. Adv Space Res, 68 (11) (2021), pp. 4496-4504.
[169]
N. Gerdes, L.G. Fokken, S. Linke, S. Kaierle, O. Suttmann, J. Hermsdorf, et al. Selective Laser Melting for processing of regolith in support of a lunar base. J Laser Appl, 30 (3) (2018), p. 032018.
[170]
C.S. Kaira, T.J. Stannard, V. de Andrade, F. de Carlo, N. Chawla. Exploring novel deformation mechanisms in aluminum-copper alloys using in situ 4D nanomechanical testing. Acta Mater, 176 (2019), pp. 242-249.
[171]
A. Pyzalla, B. Camin, T. Buslaps, M. di Michiel, H. Kaminski, A. Kottar, et al. Simultaneous tomography and diffraction analysis of creep damage. Science, 308 (5718) (2005), pp. 92-95.
[172]
W. Yang, X. He, L. Dai, X. Zhao, F. Shen. Fracture performance of GFRP bars embedded in concrete beams with cracks in an alkaline environment. J Compos Constr, 20 (6) (2016), p. 04016040.
[173]
D. Niu, L. Zhang, Q. Fu, B. Wen, D. Luo. Critical conditions and life prediction of reinforcement corrosion in coral aggregate concrete. Constr Build Mater, 238 (2020), p. 117685.
[174]
E. Rabbow, G. Horneck, P. Rettberg, J.U. Schott, C. Panitz, A. L’Afflitto, et al. EXPOSE, an astrobiological exposure facility on the international space station—from proposal to flight. Origins Life Evol Biospheres, 39 (6) (2009), pp. 581-598.
[175]
K. Wang, W. Ren, S. Wang, L. Weng. The solid lubricating material experiment device for Shenzhou-7 Spaceship. Sci China Technol Sci, 53 (9) (2010), pp. 2521-2527.
[176]
A. Upadhyaya, R.M. German. Gravitational effects during liquid phase sintering. Mater Chem Phys, 67 (1-3) (2001), pp. 25-31.
AI Summary AI Mindmap
PDF(5428 KB)

Accesses

Citations

Detail

Sections
Recommended

/