Multimodal Machine Learning Guides Low Carbon Aeration Strategies in Urban Wastewater Treatment

Hong-Cheng Wang, Yu-Qi Wang, Xu Wang, Wan-Xin Yin, Ting-Chao Yu, Chen-Hao Xue, Ai-Jie Wang

Engineering ›› 2024, Vol. 36 ›› Issue (5) : 51-62.

PDF(3479 KB)
PDF(3479 KB)
Engineering ›› 2024, Vol. 36 ›› Issue (5) : 51-62. DOI: 10.1016/j.eng.2023.11.020
Research
Article

Multimodal Machine Learning Guides Low Carbon Aeration Strategies in Urban Wastewater Treatment

Author information +
History +

Abstract

The potential for reducing greenhouse gas (GHG) emissions and energy consumption in wastewater treatment can be realized through intelligent control, with machine learning (ML) and multimodality emerging as a promising solution. Here, we introduce an ML technique based on multimodal strategies, focusing specifically on intelligent aeration control in wastewater treatment plants (WWTPs). The generalization of the multimodal strategy is demonstrated on eight ML models. The results demonstrate that this multimodal strategy significantly enhances model indicators for ML in environmental science and the efficiency of aeration control, exhibiting exceptional performance and interpretability. Integrating random forest with visual models achieves the highest accuracy in forecasting aeration quantity in multimodal models, with a mean absolute percentage error of 4.4% and a coefficient of determination of 0.948. Practical testing in a full-scale plant reveals that the multimodal model can reduce operation costs by 19.8% compared to traditional fuzzy control methods. The potential application of these strategies in critical water science domains is discussed. To foster accessibility and promote widespread adoption, the multimodal ML models are freely available on GitHub, thereby eliminating technical barriers and encouraging the application of artificial intelligence in urban wastewater treatment.

Graphical abstract

Keywords

Wastewater treatment / Multimodal machine learning / Deep learning / Aeration control / Interpretable machine learning

Cite this article

Download citation ▾
Hong-Cheng Wang, Yu-Qi Wang, Xu Wang, Wan-Xin Yin, Ting-Chao Yu, Chen-Hao Xue, Ai-Jie Wang. Multimodal Machine Learning Guides Low Carbon Aeration Strategies in Urban Wastewater Treatment. Engineering, 2024, 36(5): 51‒62 https://doi.org/10.1016/j.eng.2023.11.020

References

[1]
G. McNicol, J. Jeliazovski, J.J. François, S. Kramer, R. Ryals. Climate change mitigation potential in sanitation via off-site composting of human waste. Nat Clim Change, 10 (6) ( 2020), pp. 545-549
[2]
F.F. Nerini, B. Sovacool, N. Hughes, L. Cozzi, E. Cosgrave, M. Howells, et al.. Connecting climate action with other sustainable development goals. Nat Sustainability, 2 (8) ( 2019), pp. 674-680
[3]
N. Zhou, N. Khanna, W. Feng, J. Ke, M. Levine. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050. Nat Energy, 3 (11) ( 2018), pp. 978-984
[4]
G. Sabia, L. Petta, F. Avolio, E. Caporossi. Energy saving in wastewater treatment plants: a methodology based on common key performance indicators for the evaluation of plant energy performance, classification and benchmarking. Energy Convers Manage, 220 ( 2020), Article 113067
[5]
Edenhofer O, Pichs-Madruga R, Sokona Y, Minx JC, Farahani E, Kadner S, et al. Climate change 2014: mitigation of climate change. Cambridge: Cambridge University Press; 2014.
[6]
E.R. Jones, M.T.H. van Vliet, M. Qadir, M.F.P. Bierkens. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst Sci Data, 13 (2) ( 2021), pp. 237-254
[7]
M.C.M. Van Loosdrecht,D. Brdjanovic. Water treatment. Anticipating the next century of wastewater treatment. Science, 344 (6191) ( 2014), pp. 1452-1453
[8]
L. Shao, G.Q. Chen. Water footprint assessment for wastewater treatment: method, indicator, and application. Environ Sci Technol, 47 (14) ( 2013), pp. 7787-7794
[9]
S.G.S.A. Rothausen, D. Conway. Greenhouse-gas emissions from energy use in the water sector. Nat Clim Change, 1 (4) ( 2011), pp. 210-219
[10]
D. Shindell, C.J. Smith. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature, 573 (7774) ( 2019), pp. 408-411
[11]
T.K.L. Nguyen, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, L.D. Nghiem, et al.. Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes. Sci Total Environ, 671 ( 2019), pp. 1302-1313
[12]
Y.Q. Wang, H.C. Wang, Y.P. Song, S.Q. Zhou, Q.N. Li, B. Liang, et al.. Machine learning framework for intelligent aeration control in wastewater treatment plants: automatic feature engineering based on variation sliding layer. Water Res, 246 ( 2023), Article 120676
[13]
W.J. Du, J.Y. Lu, Y.R. Hu, J. Xiao, C. Yang, J. Wu, et al.. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat Water, 1 (2) ( 2023), pp. 166-175
[14]
H. Wang, X. Lu, Y. Deng, Y. Sun, C.P. Nielsen, Y. Liu, et al.. China’s CO2 peak before 2030 implied from characteristics and growth of cities. Nat Sustainability, 2 (8) ( 2019), pp. 748-754
[15]
A. Ramaswami, K. Tong, A. Fang, R.M. Lal, A.S. Nagpure, Y. Li, et al.. Urban cross-sector actions for carbon mitigation with local health co-benefits in China. Nat Clim Change, 7 (10) ( 2017), pp. 736-742
[16]
X. Liang, S. Zhang, Y. Wu, J. Xing, X. He, K.M. Zhang, et al.. Air quality and health benefits from fleet electrification in China. Nat Sustainability, 2 (10) ( 2019), pp. 962-971
[17]
X. Hao, R. Liu, X. Huang. Evaluation of the potential for operating carbon neutral WWTPs in China. Water Res, 87 ( 2015), pp. 424-431
[18]
G. Skouteris, G. Rodriguez-Garcia, S.F. Reinecke, U. Hampel. The use of pure oxygen for aeration in aerobic wastewater treatment: a review of its potential and limitations. Bioresour Technol, 312 ( 2020), Article 123595
[19]
E. Pittoors, Y. Guo, S.W.H. van Hulle. Modeling dissolved oxygen concentration for optimizing aeration systems and reducing oxygen consumption in activated sludge processes: a review. Chem Eng Commun, 201 (8) ( 2014), pp. 983-1002
[20]
L. Åmand, G. Olsson, B. Carlsson. Aeration control—a review. Water Sci Technol, 67 (11) ( 2013), pp. 2374-2398
[21]
G. Crini, E. Lichtfouse. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett, 17 (1) ( 2019), pp. 145-155
[22]
Y. Sun, Y. Guan, M. Pan, X. Zhan, Z. Hu, G. Wu. Enhanced biological nitrogen removal and N2O emission characteristics of the intermittent aeration activated sludge process. Rev Environ Sci Bio Technol, 16 (4) ( 2017), pp. 761-780
[23]
A. Fenu, G. Guglielmi, J. Jimenez, M. Spèrandio, D. Saroj, B. Lesjean, et al.. Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to MBR specificities. Water Res, 44 (15) ( 2010), pp. 4272-4294
[24]
C. Sutton, M. Boley, L.M. Ghiringhelli, M. Rupp, J. Vreeken, M. Scheffler.Identifying domains of applicability of machine learning models for materials science. Nat Commun, 11 (1) ( 2020), p. 4428
[25]
M.H.S. Segler, M. Preuss, M.P. Waller. Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 555 (7698) ( 2018), pp. 604-610
[26]
D.T. Jones, J.M. Thornton.The impact of AlphaFold2 one year on. Nat Methods, 19 (1) ( 2022), pp. 15-20
[27]
S. Eggimann, L. Mutzner, O. Wani, M.Y. Schneider, D. Spuhler, M.M. de Vitry, et al.. The potential of knowing more: a review of data-driven urban water management. Environ Sci Technol, 51 (5) ( 2017), pp. 2538-2553
[28]
K.B. Newhart, R.W. Holloway, A.S. Hering, T.Y. Cath. Data-driven performance analyses of wastewater treatment plants: a review. Water Res, 157 ( 2019), pp. 498-513
[29]
J. Rodriguez-Perez, C. Leigh, B. Liquet, C. Kermorvant, E. Peterson, D. Sous, et al.. Detecting technical anomalies in high-frequency water-quality data using artificial neural networks. Environ Sci Technol, 54 (21) ( 2020), pp. 13719-13730
[30]
T.H. Miller, M.D. Gallidabino, J.I. MacRae, C. Hogstrand, N.R. Bury, L.P. Barron, et al.. Machine learning for environmental toxicology: a call for integration and innovation. Environ Sci Technol, 52 (22) ( 2018), pp. 12953-12955
[31]
M. Garrido-Baserba, S. Vinardell, M. Molinos-Senante, D. Rosso, M. Poch. The economics of wastewater treatment decentralization: a techno-economic evaluation. Environ Sci Technol, 52 (15) ( 2018), pp. 8965-8976
[32]
F. Hernández-del-Olmo, E. Gaudioso, R. Dormido, N. Duro. Energy and environmental efficiency for the N-ammonia removal process in wastewater treatment plants by means of reinforcement learning. Energies, 9 (9) ( 2016), p. 755
[33]
A. Asadi, A. Verma, K. Yang, B. Mejabi. Wastewater treatment aeration process optimization: a data mining approach. J Environ Manage, 203 (Pt 2) ( 2017), pp. 630-639
[34]
J.J. Zhu, L. Kang, P.R. Anderson. Predicting influent biochemical oxygen demand: balancing energy demand and risk management. Water Res, 128 ( 2018), pp. 304-313
[35]
K. Lotfi, H. Bonakdari, I. Ebtehaj, F.S. Mjalli, M. Zeynoddin, R. Delatolla, et al.. Predicting wastewater treatment plant quality parameters using a novel hybrid linear-nonlinear methodology. J Environ Manage, 240 ( 2019), pp. 463-474
[36]
J. Wang, K. Wan, X. Gao, X. Cheng, Y. Shen, Z. Wen, et al.. Energy and materials-saving management via deep learning for wastewater treatment plants. IEEE. Access, 8 ( 2020), pp. 191694-191705
[37]
O. Icke, D.M. van Es, M.F. de Koning, J.J.G. Wuister, J. Ng, K.M. Phua, et al.. Performance improvement of wastewater treatment processes by application of machine learning. Water Sci Technol, 82 (12) ( 2020), pp. 2671-2680
[38]
Z. Guo, B. Du, J. Wang, Y. Shen, Q. Li, D. Feng, et al.. Data-driven prediction and control of wastewater treatment process through the combination of convolutional neural network and recurrent neural network. RSC Adv, 10 (23) ( 2020), pp. 13410-13419
[39]
N. Khatri, K.K. Khatri, A. Sharma. Artificial neural network modelling of faecal coliform removal in an intermittent cycle extended aeration system-sequential batch reactor based wastewater treatment plant. J Water Process Eng, 37 ( 2020), Article 101477
[40]
K.B. Newhart, C.A. Marks, T. Rauch-Williams, T.Y. Cath, A.S. Hering. Hybrid statistical-machine learning ammonia forecasting in continuous activated sludge treatment for improved process control. J Water Process Eng, 37 ( 2020), Article 101389
[41]
M.S. Zaghloul, O.T. Iorhemen, R.A. Hamza, J.H. Tay, G. Achari. Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors. Water Res, 189 ( 2021), Article 116657
[42]
A.S. Sangeeta, A. Sharafati, P. Sihag, N. Al-Ansari, K.W. Chau. Machine learning model development for predicting aeration efficiency through Parshall flume. Eng Appl Comput Fluid Mech, 15 (1) ( 2021), pp. 889-901
[43]
Y. Pan, M. Dagnew. A new approach to estimating oxygen off-gas fraction and dynamic alpha factor in aeration systems using hybrid machine learning and mechanistic models. J Water Process Eng, 48 ( 2022), Article 102924
[44]
A.S. Qambar, M.M. Al Khalidy. Optimizing dissolved oxygen requirement and energy consumption in wastewater treatment plant aeration tanks using machine learning. J Water Process Eng, 50 ( 2022), Article 103237
[45]
H.C. Croll, K. Ikuma, S.K. Ong, S. Sarkar. Reinforcement learning applied to wastewater treatment process control optimization: approaches, challenges, and path forward. Crit Rev Environ Sci Technol, 53 (20) ( 2023), pp. 1775-1794
[46]
M. Schwarz, J. Trippel, M. Engelhart, M. Wagner. Dynamic alpha factor prediction with operating data—a machine learning approach to model oxygen transfer dynamics in activated sludge. Water Res, 231 ( 2023), Article 119650
[47]
H. Visser, N. Evers, A. Bontsema, J. Rost, A. de Niet, P. Vethman, et al.. What drives the ecological quality of surface waters? A review of 11 predictive modeling tools. Water Res, 208 ( 2022), Article 117851
[48]
T. Jia, Z. Kapelan, R. de Vries, P. Vriend, E.C. Peereboom, I. Okkerman, et al.. Deep learning for detecting macroplastic litter in water bodies: a review. Water Res, 231 ( 2023), Article 119632
[49]
N. Gnann, B. Baschek, T.A. Ternes. Close-range remote sensing-based detection and identification of macroplastics on water assisted by artificial intelligence: a review. Water Res, 222 ( 2022), Article 118902
[50]
X. Zhou, Z. Tang, W. Xu, F. Meng, X. Chu, K. Xin, et al.. Deep learning identifies accurate burst locations in water distribution networks. Water Res, 166 ( 2019), Article 115058
[51]
A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis.Deep learning for computer vision: a brief review. Comput Intell Neurosci, 2018 ( 2018), p. 7068349
[52]
Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans Neural Networks Learn Syst, 33 (12) ( 2022), pp. 6999-7019
[53]
S. Mallat.Understanding deep convolutional networks. Philos Trans R Soc A, 374 ( 2065) ( 2016), p. 20150203
[54]
Wang CY, Bochkovskiy A, Liao HYM.YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. 2022. arXiv:2207.02696.
[55]
C. Chen, Z. Zheng, T. Xu, S. Guo, S. Feng, W. Yao, et al.. YOLO-based UAV technology: a review of the research and its applications. Drones, 7 (3) ( 2023), p. 190
[56]
J. Holler, S.C. Levinson. Multimodal language processing in human communication. Trends Cognit Sci, 23 (8) ( 2019), pp. 639-652
[57]
S.R. Stahlschmidt, B. Ulfenborg, J. Synnergren. Multimodal deep learning for biomedical data fusion: a review. Briefings Bioinf, 23 (2) ( 2022), p. bbab569
[58]
Li M, Zareian A, Zeng Q, Whitehead S, Lu D, Ji H, et al. Jurafsky D, Chai J, Schluter N, Tetreault J, editors. Cross-media structured common space for multimedia event extraction. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics; 2020 Jul 5- 10 ; Stroudsburg, PA, USA. Kerrville: Association for Computational Linguistics; 2020. p. 2557-68.
[59]
J. Gao, P. Li, Z. Chen, J. Zhang. A survey on deep learning for multimodal data fusion. Neural Comput, 32 (5) ( 2020), pp. 829-864
[60]
Zhang Y, Chen M, Shen J, Wang C. Tailor versatile multi-modal learning for multi-label emotion recognition. 2022. arXiv:2201.05834.
[61]
M.A. Azam, K.B. Khan, S. Salahuddin, E. Rehman, S.A. Khan, M.A. Khan, et al.. A review on multimodal medical image fusion: compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics. Comput Biol Med, 144 ( 2022), Article 105253
[62]
Huo Y, Zhang M, Liu G, Lu H, Gao Y, Yang G, et al. WenLan: bridging vision and language by large-scale multi-modal pre-training. 2021. arXiv:2103.06561.
[63]
B. Yang, Z. Xiao, Q. Meng, Y. Yuan, W. Wang, H. Wang, et al.. Deep learning-based prediction of effluent quality of a constructed wetland. Environ Sci Ecotechnol, 13 ( 2022), Article 100207
[64]
S. Zhong, K. Zhang, M. Bagheri, J.G. Burken, A. Gu, B. Li, et al.. Machine learning: new ideas and tools in environmental science and engineering. Environ Sci Technol, 55 (19) ( 2021), pp. 12741-12754
[65]
S. Gupta, D. Aga, A. Pruden, L. Zhang, P. Vikesland. Data analytics for environmental science and engineering research. Environ Sci Technol, 55 (16) ( 2021), pp. 10895-10907
[66]
K. Chen, H. Chen, C. Zhou, Y. Huang, X. Qi, R. Shen, et al.. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res, 171 ( 2020), Article 115454
[67]
G. Wang, Q.S. Jia, M. Zhou, J. Bi, J. Qiao, A. Abusorrah. Artificial neural networks for water quality soft-sensing in wastewater treatment: a review. Artif Intell Rev, 55 (1) ( 2022), pp. 565-587
[68]
S. Zhu, H. Lu, M. Ptak, J. Dai, Q. Ji. Lake water-level fluctuation forecasting using machine learning models: a systematic review. Environ Sci Pollut Res, 27 (36) ( 2020), pp. 44807-44819
[69]
Lundberg SM, Lee SI. Von Luxburg U, Guyon I, Bengio S, Wallach H, Fergus R, editors.A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems; 2017 Dec 4- 9 ; Long Beach, CA, USA. Red Hook: Curran Associates Inc.; 2017. p. 4768-77.
[70]
Y. Meng, N. Yang, Z. Qian, G. Zhang. What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values. J Theor Appl Electron Commer Res, 16 (3) ( 2021), pp. 466-490
[71]
J. Zhang, X. Ma, J. Zhang, D. Sun, X. Zhou, C. Mi, et al.. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J Environ Manage, 332 ( 2023), p. 117357
[72]
K. Futagami, Y. Fukazawa, N. Kapoor, T. Kito. Pairwise acquisition prediction with SHAP value interpretation. J Finance Data Sci, 7 ( 2021), pp. 22-44
AI Summary AI Mindmap
PDF(3479 KB)

Accesses

Citations

Detail

Sections
Recommended

/