Machine-Learning-Assisted Compositional Design of Refractory High-Entropy Alloys with Optimal Strength and Ductility

Cheng Wen, Yan Zhang, Changxin Wang, Haiyou Huang, Yuan Wu, Turab Lookman, Yanjing Su

Engineering ›› 2025, Vol. 46 ›› Issue (3) : 214-223.

PDF(2484 KB)
PDF(2484 KB)
Engineering ›› 2025, Vol. 46 ›› Issue (3) : 214-223. DOI: 10.1016/j.eng.2023.11.026
Research
Article

Machine-Learning-Assisted Compositional Design of Refractory High-Entropy Alloys with Optimal Strength and Ductility

Author information +
History +

Abstract

Designing refractory high-entropy alloys (RHEAs) for high-temperature (HT) applications is an outstanding challenge given the vast possible composition space, which contains billions of candidates, and the need to optimize across multiple objectives. Here, we present an approach that accelerates the discovery of RHEA compositions with superior strength and ductility by integrating machine learning (ML), genetic search, cluster analysis, and experimental design. We iteratively synthesize and characterize 24 predicted compositions after six feedback loops. Four compositions show outstanding combinations of HT yield strength and room-temperature (RT) ductility spanning the ranges of 714–1061 MPa and 17.2%–50.0% fracture strain, respectively. We identify an attractive alloy system, ZrNbMoHfTa, particularly the composition Zr0.13Nb0.27Mo0.26Hf0.13Ta0.21, which demonstrates a yield approaching 940 MPa at 1200 °C and favorable RT ductility with 17.2% fracture strain. The high yield strength at 1200 °C exceeds that reported for RHEAs, with 1200 °C exceeding the service temperature limit for nickel (Ni)-based superalloys. Our ML-based approach makes it possible to rapidly optimize multiple properties for materials design, thus overcoming the common problems of limited data and a vast composition space in complex materials systems while satisfying multiple objectives.

Graphical abstract

Keywords

Machine learning / Refractory high-entropy alloys / Multi-objective optimization / Strength-ductility design

Cite this article

Download citation ▾
Cheng Wen, Yan Zhang, Changxin Wang, Haiyou Huang, Yuan Wu, Turab Lookman, Yanjing Su. Machine-Learning-Assisted Compositional Design of Refractory High-Entropy Alloys with Optimal Strength and Ductility. Engineering, 2025, 46(3): 214‒223 https://doi.org/10.1016/j.eng.2023.11.026

References

[1]
Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK.Refractory high-entropy alloys.Intermetallics 2010; 18(9):1758-1765.
[2]
Chen J, Zhou XY, Wang W, Liu B, Lv Y, Yang W, et al.A review on fundamental of high entropy alloys with promising high-temperature properties.J Alloys Compd 2018; 760:15-30.
[3]
Miracle DB, Tsai MH, Senkov ON, Soni V, Banerjee R.Refractory high entropy superalloys (RSAs).Scr Mater 2020; 187:445-452.
[4]
Couzini JPé, Senkov ON, Miracle DB, Dirras G.Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys.Data Brief 2018; 21:1622-1641.
[5]
Senkov ON, Miracle DB, Chaput KJ, Couzinie JP.Development and exploration of refractory high entropy alloys—a review.J Mater Res 2018; 33(19):3092-3128.
[6]
Senkov ON, Wilks GB, Scott JM, Miracle DB.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys.Intermetallics 2011; 19(5):698-706.
[7]
Senkov ON, Scott JM, Senkova SV, Meisenkothen F, Miracle DB, Woodward CF.Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy.J Mater Sci 2012; 47(9):4062-4074.
[8]
Han ZD, Chen N, Zhao SF, Fan LW, Yang GN, Shao Y, et al.Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys.Intermetallics 2017; 84:153-157.
[9]
Han ZD, Luan HW, Liu X, Chen N, Li XY, Shao Y, et al.Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys.Mater Sci Eng A 2018; 712:380-385.
[10]
Juan CC, Tsai MH, Tsai CW, Lin CM, Wang WR, Yang CC, et al.Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys.Intermetallics 2015; 62:76-83.
[11]
Lin CM, Juan CC, Chang CH, Tsai CW, Yeh JW.Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys.J Alloys Compd 2015; 624:100-107.
[12]
Juan CC, Tseng KK, Hsu WL, Tsai MH, Tsai CW, Lin CM, et al.Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys.Mater Lett 2016; 175:284-287.
[13]
Yang X, Zhang Y, Liaw PK.Microstructure and compressive properties of NbTiVTaAlx high entropy alloys.Procedia Eng 2012; 36:292-298.
[14]
Wang M, Ma ZL, Xu ZQ, Cheng XW.Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications.Scr Mater 2021; 191:131-136.
[15]
Wen XC, Wu Y, Huang HL, Jiang S, Wang H, Liu X, et al.Effects of Nb on deformation-induced transformation and mechanical properties of HfNbxTa0.2TiZr high entropy alloys.Mater Sci Eng A 2021; 805:140798.
[16]
Maresca F, Curtin FWA.Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K.Acta Mater 2020; 182:235-249.
[17]
Lee C, Maresca F, Feng R, Chou Y, Ungar T, Widom M, et al.Strength can be controlled by edge dislocations in refractory high-entropy alloys.Nat Commun 2021; 12(1):5474.
[18]
Sheikh S, Shafeie S, Hu Q, Ahlström J, Persson C, Vesel Jý, et al.Alloy design for intrinsically ductile refractory high-entropy alloys.J Appl Phys 2016; 120(16):164902.
[19]
Senkov ON, Miracle DB, Rao SI.Correlations to improve room temperature ductility of refractory complex concentrated alloys.Mater Sci Eng A 2021; 820:141512.
[20]
Lookman T, Balachandran PV, Xue D, Yuan R.Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design.npj Comput Mater 2019; 5:21.
[21]
Xie J, Su Y, Xue D, Jiang X, Fu H, Huang H.Machine learning for materials research and development.Acta Metall Sin 2021; 57(11):1343-1361.
[22]
Wen C, Wang CX, Zhang Y, Antonov S, Xue D, Lookman T, et al.Modeling solid solution strengthening in high entropy alloys using machine learning.Acta Mater 2021; 212:116917.
[23]
Xue DZ, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T.Accelerated search for materials with targeted properties by adaptive design.Nat Commun 2016; 7(1):11241.
[24]
Wen C, Zhang Y, Wang C, Xue D, Bai Y, Antonov S, et al.Machine learning assisted design of high entropy alloys with desired property.Acta Mater 2019; 170:109-117.
[25]
Ren F, Ward L, Williams T, Laws KJ, Wolverton C, Hattrick-Simpers J, et al.Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments.Sci Adv 2018; 4(4):eaaq1566.
[26]
Zhang HT, Fu HD, He XQ, Wang C, Jiang L, Chen LQ, et al.Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening.Acta Mater 2020; 200:803-810.
[27]
Balachandran PV, Kowalski B, Sehirlioglu A, Lookman T.Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning.Nat Commun 2018; 9(1):1668.
[28]
Yu JX, Wang CL, Chen YC, Wang C, Liu X.Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data.Mater Des 2020; 195:108996.
[29]
Liu P, Huang H, Antonov S, Wen C, Xue D, Chen H, et al.Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization.npj Comput Mater 2020; 6:62.
[30]
Gopakumar AM, Balachandran PV, Xue DZ, Gubernatis JE, Lookman T.Multi-objective optimization for materials discovery via adaptive design.Sci Rep 2018; 8(1):3738.
[31]
Guo T, Wu L, Li T.Machine learning accelerated, high throughput, multi-objective optimization of multiprincipal element alloys.Small 2021; 17(42):2102972.
[32]
Khatamsaz D, Vela B, Singh P, Johnson DD, Allaire D, Arróyave R.Multi-objective materials Bayesian optimization with active learning of design constraints: design of ductile refractory multi-principal-element alloys.Acta Mater 2022; 236:118133.
[33]
Jeong S, Minemura Y, Obayashi S.Optimization of combustion chamber for diesel engine using Kriging model.J Fluid Sci Technol 2006; 1(2):138-146.
[34]
Shimoyama K, Yoshimizu S, Jeong S, Obayashi S, Yokono Y.Multi-objective design optimization for a steam turbine stator blade using LES and GA.J Comput Sci Technol 2011; 5(3):134-147.
[35]
Tian Y, Yuan RH, Xue DZ, Zhou Y, Ding X, Sun J, et al.Role of uncertainty estimation in accelerating materials development via active learning.J Appl Phys 2020; 128(1):014103.
[36]
Zhang Y, Wen C, Wang CX, Antonov S, Xue D, Bai Y, et al.Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models.Acta Mater 2020; 185:528-539.
[37]
Menou E, Ramstein G, Bertrand E, Tancret F.Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms.Model Simul Mater Sci Eng 2016; 24(5):055001.
[38]
Deb K, Pratap A, Agarwal S, Meyarivan T.A fast and elitist multiobjective genetic algorithm: NSGA-II.IEEE Trans Evol Comput 2002; 6(2):182-197.
[39]
Tzortzis G, Likas A.The MinMax K-means clustering algorithm.Pattern Recognit 2014; 47(7):2505-2516.
[40]
Senkov ON, Gorsse S, Miracle DB.High temperature strength of refractory complex concentrated alloys.Acta Mater 2019; 175:394-405.
[41]
Steingrimsson B, Fan X, Yang X, Gao MC, Zhang Y, Liaw PK.Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys.npj Comput Mater 2021; 7:152.
[42]
Coury FG, Kaufman M, Clarke AJ.Solid-solution strengthening in refractory high entropy alloys.Acta Mater 2019; 175:66-81.
[43]
Yang S, Lu J, Xing F, Zhang L, Zhong Y.Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design—a case study with Al–Co–Cr–Fe–Ni system.Acta Mater 2020; 192:11-19.
[44]
Perepezko JH.The hotter the engine, the better.Science 2009; 326(5956):1068-1069.
[45]
Tseng KK, Juan CC, Tso S, Chen HC, Tsai CW, Yeh JW.Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf–Mo–Nb–Ta–Ti–Zr alloys.Entropy 2018; 21(1):15.
[46]
Singh P, Sharma A, Smirnov AV, Diallo MS, Ray PK, Balasubramanian G, et al.Design of high-strength refractory complex solid-solution alloys.npj Comput Mater 2018; 4:16.
[47]
Gorr B, Schellert S, Müller F, Christ HJ, Kauffmann A, Heilmaier M.Current status of research on the oxidation behavior of refractory high entropy alloys.Adv Eng Mater 2021; 23(5):2001047.
AI Summary AI Mindmap
PDF(2484 KB)

Accesses

Citations

Detail

Sections
Recommended

/