Programmable Quasi-Zero-Stiffness Metamaterials

Wenlong Liu, Sen Yan, Zhiqiang Meng, Lingling Wu, Yong Xu, Jie Chen, Jingbo Sun, Ji Zhou

Engineering ›› 2025, Vol. 47 ›› Issue (4) : 160-167.

PDF(2717 KB)
PDF(2717 KB)
Engineering ›› 2025, Vol. 47 ›› Issue (4) : 160-167. DOI: 10.1016/j.eng.2023.11.027
Research

Programmable Quasi-Zero-Stiffness Metamaterials

Author information +
History +

Abstract

Quasi-zero-stiffness (QZS) metamaterials have attracted significant interest for application in low-frequency vibration isolation. However, previous work has been limited by the design mechanism of QZS metamaterials, as it is still difficult to achieve a simplified structure suitable for practical engineering applications. Here, we introduce a class of programmable QZS metamaterials and a novel design mechanism that address this long-standing difficulty. The proposed QZS metamaterials are formed by an array of representative unit cells (RUCs) with the expected QZS features, where the QZS features of the RUC are tailored by means of a structural bionic mechanism. In our experiments, we validate the QZS features exhibited by the RUCs, the programmable QZS behavior, and the potential promising applications of these programmable QZS metamaterials in low-frequency vibration isolation. The obtained results could inspire a new class of programmable QZS metamaterials for low-frequency vibration isolation in current and future mechanical and other engineering applications.

Graphical abstract

Keywords

Quasi-zero stiffness / Metamaterials / Vibration isolation / Bionic mechanism

Cite this article

Download citation ▾
Wenlong Liu, Sen Yan, Zhiqiang Meng, Lingling Wu, Yong Xu, Jie Chen, Jingbo Sun, Ji Zhou. Programmable Quasi-Zero-Stiffness Metamaterials. Engineering, 2025, 47(4): 160‒167 https://doi.org/10.1016/j.eng.2023.11.027

References

[1]
Zhu S, Zhang X.Metamaterials: artificial materials beyond nature.Natl Sci Rev 2018; 5(2):131.
[2]
Park JJ, Lee KJB, Wright OB, Jung MK, Lee SH.Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials.Phys Rev Lett 2013; 110(24):244302.
[3]
Ge H, Yang M, Ma C, Lu MH, Chen YF, Fang N, et al.Breaking the barriers: advances in acoustic functional materials.Natl Sci Rev 2018; 5(2):159-182.
[4]
Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, et al.Ultrasonic metamaterials with negative modulus.Nat Mater 2006; 5(6):452-456.
[5]
Hamzehei R, Zolfagharian A, Dariushi S, Bodaghi M.3D-printed bio-inspired zero Poisson’s ratio graded metamaterials with high energy absorption performance.Smart Mater Struct 2022; 31(3):035001.
[6]
Chen S, Tan X, Hu J, Wang B, Wang L, Zou Y, et al.Continuous carbon fiber reinforced composite negative stiffness mechanical metamaterial for recoverable energy absorption.Compos Struct 2022; 288:115411.
[7]
Miller W, Smith CW, Mackenzie DS, Evans KE.Negative thermal expansion: a review.J Mater Sci 2009; 44(20):5441-5451.
[8]
Alabuzhev P, Gritchin A, Kim L, Migirenko G, Chon V, Stepanov P.Vibration protecting and measuring systems with quasi-zero stiffness.CRC Press, Boca Raton (1989)
[9]
Ibrahim RA.Recent advances in nonlinear passive vibration isolators.J Sound Vibrat 2008; 314(3–5):371-452.
[10]
Le TD, Ahn KK.Experimental investigation of a vibration isolation system using negative stiffness structure.Int J Mech Sci 2013; 70:99-112.
[11]
Ding H, Ji J, Chen LQ.Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics.Mech Syst Signal Process 2019; 121:675-688.
[12]
Wang Q, Zhou J, Xu D, Ouyang H.Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport.Mech Syst Signal Process 2020; 139:106633.
[13]
Fan H, Yang L, Tian Y, Wang Z.Design of metastructures with quasi-zero dynamic stiffness for vibration isolation.Compos Struct 2020; 243:112244.
[14]
Carrella A, Brennan MJ, Kovacic I, Waters TP.On the force transmissibility of a vibration isolator with quasi-zero-stiffness.J Sound Vibrat 2009; 322(4–5):707-717.
[15]
Kim J, Jeon Y, Um S, Park U, Kim KS, Kim S.A novel passive quasi-zero stiffness isolator for ultra-precision measurement systems.Int J Precis Eng Manuf 2019; 20(9):1573-1580.
[16]
Kovacic I, Brennan MJ, Waters TP.A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic.J Sound Vibrat 2008; 315(3):700-711.
[17]
Zeng R, Wen G, Zhou J, Zhao G.Limb-inspired bionic quasi-zero stiffness vibration isolator.Acta Mech Sin 2021; 37(7):1152-1167.
[18]
Wang L, Zhao Y, Sang T, Zhou H, Wang P, Zhao C.Ultra-low frequency vibration control of urban rail transit: the general quasi-zero-stiffness vibration isolator.Veh Syst Dyn 2022; 60(5):1788-1805.
[19]
Suman S, Balaji PS, Selvakumar K, Kumaraswamidhas LA.Nonlinear vibration control device for a vehicle suspension using negative stiffness mechanism.J Vib Eng Technol 2021; 9(5):957-966.
[20]
Cai C, Zhou J, Wang K, Pan H, Tan D, Xu D, et al.Flexural wave attenuation by metamaterial beam with compliant quasi-zero-stiffness resonators.Mech Syst Signal Process 2022; 174:109119.
[21]
Zhang Q, Guo D, Hu G.Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation.Adv Funct Mater 2021; 31(33):2101428.
[22]
Jiang G, Jing X, Guo Y.A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties.Mech Syst Signal Process 2020; 138:106552.
[23]
Deng T, Wen G, Ding H, Lu ZQ, Chen LQ.A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck.Mech Syst Signal Process 2020; 145:106967.
[24]
Meng Z, Chen W, Mei T, Lai Y, Li Y, Chen CQ.Bistability-based foldable origami mechanical logic gates.Extreme Mech Lett 2021; 43:101180.
[25]
Meng Z, Liu M, Yan H, Genin GM, Chen CQ.Deployable mechanical metamaterials with multistep programmable transformation.Sci Adv 2022; 8(23):eabn5460.
[26]
Dalaq AS, Daqaq MF.Experimentally-validated computational modeling and characterization of the quasi-static behavior of functional 3D-printed origami-inspired springs.Mater Des 2022; 216:110541.
[27]
Han H, Sorokin V, Tang L, Cao D.Lightweight origami isolators with deployable mechanism and quasi-zero-stiffness property.Aerosp Sci Technol 2022; 121:107319.
[28]
Shan S, Kang SH, Raney JR, Wang P, Fang L, Candido F, et al.Multistable architected materials for trapping elastic strain energy.Adv Mater 2015; 27(29):4296-4301.
[29]
Jeon SY, Shen B, Traugutt NA, Zhu Z, Fang L, Yakacki CM, et al.Synergistic energy absorption mechanisms of architected liquid crystal elastomers.Adv Mater 2022; 34(14):2200272.
[30]
Shi Y, Zhang TH.Control of self-organization: from equilibrium to non-equilibrium.Acta Phys Sin 2020; 69(14):140503.
[31]
Florijn B, Coulais C, van M Hecke.Programmable mechanical metamaterials.Phys Rev Lett 2014; 113(17):175503.
[32]
Tang Y, Lin G, Yang S, Yi YK, Kamien RD, Yin J.Programmable kiri-kirigami metamaterials.Adv Mater 2017; 29(10):1604262.
[33]
Yu X, Zhou J, Liang H, Jiang Z, Wu L.Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review.Prog Mater Sci 2018; 94:114-173.
[34]
An N, Domel AG, Zhou J, Rafsanjani A, Bertoldi K.Programmable hierarchical kirigami.Adv Funct Mater 2020; 30(6):1906711.
[35]
Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO.Bioinspired structural materials.Nat Mater 2015; 14(1):23-36.
[36]
Teyssier J, Saenko SV, van D der Marel, Milinkovitch MC.Photonic crystals cause active colour change in chameleons.Nat Commun 2015; 6(1):6368.
[37]
Zhang J, Hess PW, Kyprianidis A, Becker P, Lee A, Smith J, et al.Observation of a discrete time crystal.Nature 2017; 543(7644):217-220.
[38]
Seeboth A, Lötzsch D, Ruhmann R, Muehling O.Thermochromic polymers—function by design.Chem Rev 2014; 114(5):3037-3068.
[39]
Kamesh D, Pandiyan R, Ghosal A.Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft.J Sound Vibrat 2010; 329(17):3431-3450.
PDF(2717 KB)

Accesses

Citations

Detail

Sections
Recommended

/