Safe Motion Planning and Control Framework for Automated Vehicles with Zonotopic TRMPC

Hao Zheng, Yinong Li, Ling Zheng, Ehsan Hashemi

Engineering ›› 2024, Vol. 33 ›› Issue (2) : 146-159.

PDF(3485 KB)
PDF(3485 KB)
Engineering ›› 2024, Vol. 33 ›› Issue (2) : 146-159. DOI: 10.1016/j.eng.2023.12.003
Research
Article

Safe Motion Planning and Control Framework for Automated Vehicles with Zonotopic TRMPC

Author information +
History +

Abstract

Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles (AVs). The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer. To address this issue, this study proposes a safe motion planning and control (SMPAC) framework for AVs. For the control layer, a dynamic model including multi-dimensional uncertainties is established. A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set. A flexible tube with varying cross-sections is constructed to reduce the controller conservatism. For the planning layer, a concept of safety sets, representing the geometric boundaries of the ego vehicle and obstacles under uncertainties, is proposed. The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories. An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles. A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC. The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties.

Graphical abstract

Keywords

Automated vehicles / Automated driving / Motion planning / Motion control / Tube MPC / Zonotope

Cite this article

Download citation ▾
Hao Zheng, Yinong Li, Ling Zheng, Ehsan Hashemi. Safe Motion Planning and Control Framework for Automated Vehicles with Zonotopic TRMPC. Engineering, 2024, 33(2): 146‒159 https://doi.org/10.1016/j.eng.2023.12.003

References

[1]
E. Yurtsever, J. Lambert, A. Carballo, K. Takeda. A survey of autonomous driving: common practices and emerging technologies. IEEE Access, 8 (2020), pp. 58443-58469
[2]
J. Wang, H. Huang, K. Li, J. Li. Towards the unified principles for level 5 autonomous vehicles. Engineering, 7 (9) (2021), pp. 1313-1325
[3]
P.E. Paré, E. Hashemi, R. Stern, H. Sandberg, K.H. Johansson. Networked model for cooperative adaptive cruise control. IFAC-PapersOnLine, 52 (20) (2019), pp. 151-156
[4]
J. Claybrook, S. Kildare. Autonomous vehicles: no driver…no regulation?. Science, 361 (6397) (2018), pp. 36-37
[5]
D. Bissell. Automation interrupted: how autonomous vehicle accidents transform the material politics of automation. Polit Geogr, 65 (2018), pp. 57-66
[6]
J. Birch, R. Rivett, I. Habli, B. Bradshaw, J. Botham, D. Higham, et al.. Safety cases and their role in ISO 26262 functional safety assessment. F. Bitsch, J. Guiochet, M. Kaâniche (Eds.), Computer safety, reliability, and security; 2020 Sep 16-18; Lisbon, Portugal, Springer, Berlin (2013), pp. 154-165
[7]
H. Wang, B. Lu, J. Li, T. Liu, Y. Xing, C. Lv, et al.. Risk assessment and mitigation in local path planning for autonomous vehicles with LSTM based predictive model. IEEE Trans Autom Sci Eng, 19 (4) (2022), pp. 2738-2749
[8]
C. Schmittner, G. Griessnig, Z. Ma. Status of the development of ISO/SAE 21434. X. Larrucea, I. Santamaria, R. O'Connor, R. Messnarz (Eds.), Systems, software and services process improvement; 2018 Sep 5-7, Springer, Cham (2018), pp. 504-513
[9]
Ziegler J, Werling M, Schroder J. Navigating car-like robots in unstructured environments using an obstacle sensitive cost function. In: Processings of the 2008 IEEE Intelligent Vehicles Symposium; 2008 Jun 4-6; Eindhoven, Netherlands. Piscataway: IEEE; 2008. p. 787-91.
[10]
Anderson SJ, Karumanchi SB, Iagnemma K. Constraint-based planning and control for safe, semi-autonomous operation of vehicles. In: Proceedings of the 2012 IEEE Intelligent Vehicles Symposium; 2012 Jun 3-7; Madrid, Spain. Piscataway: IEEE; 2012. p. 383-8.
[11]
Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, J.P. How. Real-time motion planning with applications to autonomous urban driving. IEEE Trans Control Syst Technol, 17 (5) (2009), pp. 1105-1118
[12]
Werling M, Ziegler J, Kammel S, Thrun S. Optimal trajectory generation for dynamic street scenarios in a Frenét Frame. In:Proceedings of the 2010 IEEE International Conference on Robotics and Automation; 2010 May 3-7; Anchorage, AK, USA. Piscataway: IEEE; 2010. p. 987-93.
[13]
Han L, Yashiro H, Tehrani Nik Nejad H, Do QH, Mita S. Bézier curve based path planning for autonomous vehicle in urban environment. In: Proceedings of the 2010 IEEE Intelligent Vehicles Symposium; 2010 Jun 21-24; La Jolla, CA, USA. Piscataway: IEEE; 2010. p. 1036-42.
[14]
T. Maekawa, T. Noda, S. Tamura, T. Ozaki, K. Machida. Curvature continuous path generation for autonomous vehicle using B-spline curves. Comput Aided Des, 42 (4) (2010), pp. 350-359
[15]
W. Lim, S. Lee, M. Sunwoo, K. Jo. Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Trans Intell Transp Syst, 19 (2) (2018), pp. 613-626
[16]
Y. Huang, H. Ding, Y. Zhang, H. Wang, D. Cao, N. Xu, et al.. A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Trans Ind Electron, 67 (2) (2020), pp. 1376-1386
[17]
J. Wu, Z. Huang, Z. Hu, C. Lv. Toward human-in-the-loop AI: enhancing deep reinforcement learning via real-time human guidance for autonomous driving. Engineering, 21 (2023), pp. 75-91
[18]
Hashemi E, He X, Johansson KH. A Dynamical game approach for integrated stabilization and path tracking for autonomous vehicles. In: Proceedings of the 2020 American Control Conference (ACC); 2020 Jul 1-3; Denver, CO, USA. Piscataway: IEEE; 2020. p. 4108-13.
[19]
K. Yang, X. Tang, Y. Qin, Y. Huang, H. Wang, H. Pu. Comparative study of trajectory tracking control for automated vehicles via model predictive control and robust H-infinity state feedback control. Chin J Mech Eng, 34 (1) (2021), p. 74
[20]
E. Hashemi, Y. Qin, A. Khajepour. Slip-aware driver assistance path tracking and stability control. Control Eng Pract, 118 (2022), Article 104958
[21]
L. Brunke, M. Greeff, A.W. Hall, Z. Yuan, S. Zhou, J. Panerati, et al.. Safe learning in robotics: from learning-based control to safe reinforcement learning. Annu Rev Control Robot Auton Syst, 5 (1) (2022), pp. 411-444
[22]
H. Wang, Y. Huang, A. Khajepour, Y. Zhang, Y. Rasekhipour, D. Cao. Crash mitigation in motion planning for autonomous vehicles. IEEE Trans Intell Transp Syst, 20 (9) (2019), pp. 3313-3323
[23]
Y. Qin, E. Hashemi, A. Khajepour. Integrated crash avoidance and mitigation algorithm for autonomous vehicles. IEEE Trans Ind Inform, 17 (11) (2021), pp. 7246-7255
[24]
G. Collares Pereira, B. Wahlberg, H. Pettersson, J. Mårtensson. Adaptive reference aware MPC for lateral control of autonomous vehicles. Control Eng Pract, 132 (2023), Article 105403
[25]
D. Mayne. Robust and stochastic model predictive control: are we going in the right direction?. Annu Rev Control, 41 (2016), pp. 184-192
[26]
M. Farina, L. Giulioni, R. Scattolini. Stochastic linear model predictive control with chance constraints—a review. J Process Control, 44 (2016), pp. 53-67
[27]
E.C. Kerrigan, J.M. Maciejowski. Feedback min-max model predictive control using a single linear program: robust stability and the explicit solution. Int J Robust Nonlinear Control, 14 (4) (2004), pp. 395-413
[28]
D.Q. Mayne, S.V. Raković, R. Findeisen, F. Allgöwer. Robust output feedback model predictive control of constrained linear systems. Automatica, 42 (7) (2006), pp. 1217-1222
[29]
H. Zheng, L. Zheng, Y. Li, K. Wang, Z. Zhang, M. Ding. Varying zonotopic tube RMPC with switching logic for lateral path tracking of autonomous vehicle. J Franklin Inst, 359 (7) (2022), pp. 2759-2787
[30]
A. Wischnewski, M. Euler, S. Gümüs, B. Lohmann. Tube model predictive control for an autonomous race car. Veh Syst Dyn, 60 (9) (2022), pp. 3151-3173
[31]
P. Hang, X. Xia, G. Chen, X. Chen. Active safety control of automated electric vehicles at driving limits: a tube-based MPC approach. IEEE Trans Transp Electrif, 8 (1) (2022), pp. 1338-1349
[32]
X. Wu, C. Wei, H. Tian, W. Wang, C. Jiang. Fault-tolerant control for path-following of independently actuated autonomous vehicles using tube-based model predictive control. IEEE Trans Intell Transp Syst, 23 (11) (2022), pp. 20282-20297
[33]
S. Feng, Z. Song, Z. Li, Y. Zhang, L. Li. Robust platoon control in mixed traffic flow based on tube model predictive control. IEEE Trans Intell Transp Syst, 6 (4) (2021), pp. 711-722
[34]
M. Althoff, J.J. Rath. Comparison of guaranteed state estimators for linear time-invariant systems. Automatica, 130 (2021), Article 109662
[35]
Y. Rasekhipour, A. Khajepour, S.K. Chen, B. Litkouhi. A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Trans Intell Transp Syst, 18 (5) (2017), pp. 1255-1267
[36]
L. Grüne. Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems. SIAM J Control Optim, 48 (2) (2009), pp. 1206-1228
[37]
Althoff M, Grebenyuk D. Implementation of interval arithmetic in CORA 2016. In:Proceedings of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems;2016 Apr 12, Vienna, Austria. Stockport: EasyChair; 2016. p. 91-105.
[38]
Stoican F, Hovd M. Efficient solution of a qp optimization problem with zonotopic constraints. In:Proceedings of the 2012 IEEE International Conference on Control Applications; 2012 Oct 3-5; Dubrovnik, Croatia. Piscataway: IEEE; 2013. p. 457-62.
[39]
J. Liu, Y. Luo, Z. Zhong, K. Li, H. Huang, H. Xiong. A probabilistic architecture of long-term vehicle trajectory prediction for autonomous driving. Engineering, 19 (2022), pp. 228-239
AI Summary AI Mindmap
PDF(3485 KB)

Accesses

Citations

Detail

Sections
Recommended

/