A Single-Cell Landscape of Human Liver Transplantation Reveals a Pathogenic Immune Niche Associated with Early Allograft Dysfunction

Xin Shao, Zheng Wang, Kai Wang, Xiaoyan Lu, Ping Zhang, Rongfang Guo, Jie Liao, Penghui Yang, Shusen Zheng, Xiao Xu, Xiaohui Fan

Engineering ›› 2024, Vol. 36 ›› Issue (5) : 193-208.

PDF(8677 KB)
PDF(8677 KB)
Engineering ›› 2024, Vol. 36 ›› Issue (5) : 193-208. DOI: 10.1016/j.eng.2023.12.004
Research
Article

A Single-Cell Landscape of Human Liver Transplantation Reveals a Pathogenic Immune Niche Associated with Early Allograft Dysfunction

Author information +
History +

Abstract

Liver transplantation (LT) is the standard therapy for individuals afflicted with end-stage liver disease. Despite notable advancements in LT technology, the incidence of early allograft dysfunction (EAD) remains a critical concern, exacerbating the current organ shortage and detrimentally affecting the prognosis of recipients. Unfortunately, the perplexing hepatic heterogeneity has impeded characterization of the cellular traits and molecular events that contribute to EAD. Herein, we constructed a pioneering single-cell transcriptomic landscape of human transplanted livers derived from non-EAD and EAD patients, with 12 liver samples collected from 7 donors during the cold perfusion and portal reperfusion stages. Comparison of the 75 231 cells of non-EAD and EAD patients revealed an EAD-associated immune niche comprising mucosal-associated invariant T cells, granzyme B+ (GZMB +) granzyme K+ (GZMK +) natural killer cells, and S100 calcium binding protein A12+ (S100A12 +) neutrophils. Moreover, we verified this immune niche and its association with EAD occurrence in two independent cohorts. Our findings elucidate the cellular characteristics of transplanted livers and the EAD-associated pathogenic immune niche at the single-cell level, thus, offering valuable insights into EAD onset.

Graphical abstract

Keywords

Human liver transplantation / Early allograft dysfunction / Pathogenic immune niche / Single-cell analysis / Cell-cell communication

Cite this article

Download citation ▾
Xin Shao, Zheng Wang, Kai Wang, Xiaoyan Lu, Ping Zhang, Rongfang Guo, Jie Liao, Penghui Yang, Shusen Zheng, Xiao Xu, Xiaohui Fan. A Single-Cell Landscape of Human Liver Transplantation Reveals a Pathogenic Immune Niche Associated with Early Allograft Dysfunction. Engineering, 2024, 36(5): 193‒208 https://doi.org/10.1016/j.eng.2023.12.004

References

[1]
L.S. Yang, L.L. Shan, A. Saxena, D.L. Morris. Liver transplantation: a systematic review of long-term quality of life. Liver Int, 34 (9) ( 2014), pp. 1298-1313
[2]
C.C. Jadlowiec, T. Taner. Liver transplantation: current status and challenges. World J Gastroenterol, 22 (18) ( 2016), pp. 4438-4445
[3]
M. Deschenes. Early allograft dysfunction: causes, recognition, and management. Liver Transplant, 19 (S2) ( 2013), pp. S6-S8
[4]
J. Zhou, J. Chen, Q. Wei, K. Saeb-Parsy, X. Xu. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction. Liver Transplant, 26 (8) ( 2020), pp. 1034-1048
[5]
V.G. Agopian, M.P. Harlander-Locke, D. Markovic, W. Dumronggittigule, V. Xia, F.M. Kaldas, et al.. Evaluation of early allograft function using the liver graft assessment following transplantation risk score model. JAMA Surg, 153 (5) ( 2018), pp. 436-444
[6]
S. Feng, N.P. Goodrich, J.L. Bragg-Gresham, D.M. Dykstra, J.D. Punch, M.A. DebRoy, et al.. Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant, 6 (4) ( 2006), pp. 783-790
[7]
M. Malinchoc, P.S. Kamath, F.D. Gordon, C.J. Peine, J. Rank, P.C.J. ter Borg. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology, 31 (4) ( 2000), pp. 864-871
[8]
T. Ito, B.V. Naini, D. Markovic, A. Aziz, S. Younan, M. Lu, et al.. Ischemia-reperfusion injury and its relationship with early allograft dysfunction in liver transplant patients. Am J Transplant, 21 (2) ( 2021), pp. 614-625
[9]
S. Kageyama, K. Nakamura, B. Ke, R.W. Busuttil, J.W. Kupiec-Weglinski. Serelaxin induces Notch1 signaling and alleviates hepatocellular damage in orthotopic liver transplantation. Am J Transplant, 18 (7) ( 2018), pp. 1755-1763
[10]
J. Zhao, S. Zhang, Y. Liu, X. He, M. Qu, G. Xu, et al.. Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human. Cell Discovery, 6 (1) ( 2020), p. 22
[11]
H. Huang, R. Chen, Y. Lin, J. Jiang, S. Feng, X. Zhang, et al.. Decoding single-cell landscape and intercellular crosstalk in the transplanted liver. Transplantation, 107 (4) ( 2023), pp. 890-902
[12]
F. Sampaziotis, D. Muraro, O.C. Tysoe, S. Sawiak, T.E. Beach, E.M. Godfrey, et al.. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science, 371 (6531) ( 2021), pp. 839-846
[13]
Y. Shan, D. Qi, L. Zhang, L. Wu, W. Li, H. Liu, et al.. Single-cell RNA-seq revealing the immune features of donor liver during liver transplantation. Front Immunol, 14 ( 2023), p. 1096733
[14]
X. Li, S. Li, B. Wu, Q. Xu, D. Teng, T. Yang, et al.. Landscape of immune cells heterogeneity in liver transplantation by single-cell RNA sequencing analysis. Front Immunol, 13 ( 2022), Article 890019
[15]
X. Yang, D. Lu, R. Wang, Z. Lian, Z. Lin, J. Zhuo, et al.. Single-cell profiling reveals distinct immune phenotypes that contribute to ischaemia-reperfusion injury after steatotic liver transplantation. Cell Proliferation, 54 (10) ( 2021), Article e13116
[16]
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell 2019 ;177(7):1888-902.
[17]
X. Shao, H. Yang, X. Zhuang, J. Liao, P. Yang, J. Cheng, et al.. scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network. Nucleic Acids Res, 49 (21) ( 2021), p. e122
[18]
X. Shao, J. Liao, X. Lu, R. Xue, N. Ai, X. Fan. scCATCH: automatic annotation on cell types of clusters from single-cell RNA sequencing data. iScience, 23 (3) ( 2020), Article 100882
[19]
G. La Manno, R. Soldatov, A. Zeisel, E. Braun, H. Hochgerner, V. Petukhov, et al.. RNA velocity of single cells. Nature, 560 (7719) ( 2018), pp. 494-498
[20]
V. Bergen, M. Lange, S. Peidli, F.A. Wolf, F.J. Theis. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol, 38 (12) ( 2020), pp. 1408-1414
[21]
J. Cao, M. Spielmann, X. Qiu, X. Huang, D.M. Ibrahim, A.J. Hill, et al.. The single-cell transcriptional landscape of mammalian organogenesis. Nature, 566 (7745) ( 2019), pp. 496-502
[22]
X. Qiu, Q. Mao, Y. Tang, L. Wang, R. Chawla, H.A. Pliner, et al.. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods, 14 (10) ( 2017), pp. 979-982
[23]
Y. Zhou, B. Zhou, L. Pache, M. Chang, A.H. Khodabakhshi, O. Tanaseichuk, et al.. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, 10 (1) ( 2019), p. 1523
[24]
T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, et al.. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation, 2 (3) ( 2021), Article 100141
[25]
L. Wang, J. Li, S. He, Y. Liu, H. Chen, S. He, et al.. Resolving the graft ischemia-reperfusion injury during liver transplantation at the single cell resolution. Cell Death Dis, 12 (6) ( 2021), p. 589
[26]
H. Hirao, K. Nakamura, J.W. Kupiec-Weglinski. Liver ischaemia-reperfusion injury: a new understanding of the role of innate immunity. Nat Rev Gastroenterol Hepatol, 19 (4) ( 2022), pp. 239-256
[27]
A. Aubert, M. Lane, K. Jung, D.J. Granville. Granzyme B as a therapeutic target: an update in 2022. Expert Opin Ther Targets, 26 (11) ( 2022), pp. 979-993
[28]
M. Rucevic, L.D. Fast, G.D. Jay, F.M. Trespalcios, A. Sucov, E. Siryaporn, et al.. Altered levels and molecular forms of granzyme K in plasma from septic patients. Shock, 27 (5) ( 2007), pp. 488-493
[29]
M.J. Smyth, M.D. O’Connor, J.A. Trapani. Granzymes: a variety of serine protease specificities encoded by genetically distinct subfamilies. J Leukocyte Biol, 60 (5) ( 1996), pp. 555-562
[30]
J. Roth, T. Vogl, C. Sorg, C. Sunderkotter. Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol, 24 (4) ( 2003), pp. 155-158
[31]
C. Silvestre-Roig, Z.G. Fridlender, M. Glogauer, P. Scapini. Neutrophil diversity in health and disease. Trends Immunol, 40 (7) ( 2019), pp. 565-583
[32]
S. Tang, J. Wang, J. Liu, Y. Huang, Y. Zhou, S. Yang, et al.. Niban protein regulates apoptosis in HK-2 cells via caspase-dependent pathway. Ren Failure, 41 (1) ( 2019), pp. 455-466
[33]
A. Pedroza-Gonzalez, C. Verhoef, J.N.M. Ijzermans, M.P. Peppelenbosch, J. Kwekkeboom, J. Verheij, et al.. Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatology, 57 (1) ( 2013), pp. 183-194
[34]
D. Basavarajappa, M. Wan, A. Lukic, D. Steinhilber, B. Samuelsson, O. Rådmark. Roles of coactosin-like protein (CLP) and 5-lipoxygenase-activating protein (FLAP) in cellular leukotriene biosynthesis. Proc Natl Acad Sci USA, 111 (31) ( 2014), pp. 11371-11376
[35]
E.E.M. Bates, M.C. Dieu, O. Ravel, S.M. Zurawski, S. Patel, J.M. Bridon, et al.. CD40L activation of dendritic cells down-regulates DORA, a novel member of the immunoglobulin superfamily. Mol Immunol, 35 (9) ( 1998), pp. 513-524
[36]
Chu TY, Zheng-Gérard C, Huang KY, Chang YC, Chen YW, I KY, et al. GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation. Nat Commun 2022;13(1):6385.
[37]
H. Sun, J. Feng, L. Tang. Function of TREM1 and TREM2 in liver-related diseases. Cells, 9 (12) ( 2020), p. 2626
[38]
C. Fondevila, J. Muñoz, J.J. Lozano, M.A. Loera, S. Jimenez-Galanes, O. Sanchez, et al.. Gene-expression profiles of human liver biopsies correlate with post-transplant allograft function and are determined by donor type. Liver Transplant, 15 (7) ( 2009), p. S73
[39]
X. Shao, C. Li, H. Yang, X. Lu, J. Liao, J. Qian, et al.. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk. Nat Commun, 13 (1) ( 2022), p. 4429
[40]
D.M. Cable, E. Murray, L.S. Zou, A. Goeva, E.Z. Macosko, F. Chen, et al.. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol, 40 (4) ( 2021), pp. 517-526
[41]
X. Shao, J. Liao, C. Li, X. Lu, J. Cheng, X. Fan.CellTalkDB: a manually curated database of ligand-receptor interactions in humans and mice. Briefings Bioinf, 22 (4) ( 2021), Article bbaa269
[42]
A. Yoshido, G. Sudo, A. Takasawa, H. Aoki, H. Kitajima, E. Yamamoto, et al.. Serum amyloid A 1 recruits neutrophils to the invasive front of T1 colorectal cancers. J Gastroenterol Hepatol, 38 (2) ( 2023), pp. 301-310
[43]
Busch L al Taleb Z, Tsai YL, Nguyen VTT, Lu Q, Synatschke CV, et al. Amyloid beta and its naturally occurring N-terminal variants are potent activators of human and mouse formyl peptide receptor 1. J Biol Chem 2022 ;298(12):102642.
[44]
Q. Ma, R. Immler, M. Pruenster, M. Sellmayr, C. Li, A. von Brunn, et al.. Soluble uric acid inhibits β2 integrin-mediated neutrophil recruitment in innate immunity. Blood, 139 (23) ( 2022), pp. 3402-3417
[45]
R. González-Amaro, J.R. Cortés, F. Sánchez-Madrid, P. Martin. Is CD69 an effective brake to control inflammatory diseases?. Trends Mol Med, 19 (10) ( 2013), pp. 625-632
[46]
H. Ponta, L. Sherman, P.A. Herrlich. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol, 4 (1) ( 2003), pp. 33-45
[47]
J.C. Hong, R.W. Busuttil. Cold ischemia time and liver graft survival. Am J Transplant, 8 (3) ( 2008), pp. 481-482
[48]
P. Sethi, M. Thillai, B.S. Thankamonyamma, S. Mallick, U. Gopalakrishnan, D. Balakrishnan, et al.. Living donor liver transplantation using small-for-size grafts: does size really matter?. J Clin Exp Hepatol, 8 (2) ( 2018), pp. 125-131
[49]
L.I. Mazilescu, S. Kotha, A. Ghanekar, L. Lilly, T.W. Reichman, Z. Galvin, et al.. Early allograft dysfunction after liver transplantation with donation after circulatory death and brain death grafts: does the donor type matter?. Transplant Direct, 7 (8) ( 2021), p. e727
[50]
G.K. Michalopoulos, B. Bhushan. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol, 18 (1) ( 2021), pp. 40-55
[51]
T.A. Woreta, S.A. Alqahtani. Evaluation of abnormal liver tests. Med Clin North Am, 98 (1) ( 2014), pp. 1-16
PDF(8677 KB)

Accesses

Citations

Detail

Sections
Recommended

/