Generation of Eco-Friendly and Disease-Resistant Channel Catfish (Ictalurus punctatus) Harboring the Alligator Cathelicidin Gene via CRISPR/Cas9 Engineering

Jinhai Wang, Baofeng Su, De Xing, Timothy J. Bruce, Shangjia Li, Logan Bern, Mei Shang, Andrew Johnson, Rhoda Mae C. Simora, Michael Coogan, Darshika U. Hettiarachchi, Wenwen Wang, Tasnuba Hasin, Jacob Al-Armanazi, Cuiyu Lu, Rex A. Dunham

Engineering ›› 2024, Vol. 39 ›› Issue (8) : 273-286.

PDF(2550 KB)
PDF(2550 KB)
Engineering ›› 2024, Vol. 39 ›› Issue (8) : 273-286. DOI: 10.1016/j.eng.2023.12.005
Research
Article

Generation of Eco-Friendly and Disease-Resistant Channel Catfish (Ictalurus punctatus) Harboring the Alligator Cathelicidin Gene via CRISPR/Cas9 Engineering

Author information +
History +

Abstract

As a precise and versatile tool for genome manipulation, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) platform holds promise for modifying fish traits of interest. With the aim of reducing transgene introgression and controlling reproduction, upscaled disease resistance and reproductive intervention in catfish species have been studied to lower the potential environmental risks of the introgression of escapees as transgenic animals. Taking advantage of the CRISPR/Cas9-mediated system, we succeeded in integrating the cathelicidin gene (As-Cath) from an alligator (Alligator sinensis) into the target luteinizing hormone (lh) locus of channel catfish (Ictalurus punctatus) using two delivery systems assisted by double-stranded DNA (dsDNA) and single-stranded oligodeoxynu-cleotides (ssODNs), respectively. In this study, high knock in (KI) efficiency (22.38%, 64/286) but low on-target events was achieved using the ssODN strategy, whereas adopting a dsDNA as the donor template led to an efficient on-target KI (10.80%, 23/213). The on-target KI of As-Cath was instrumental in establishing the l h knockout L H - _  As-Cath  +  ) catfish line,which displayed heightened disease resistance and reduced fecundity compared with the wild-type (WT) sibling fish. Furthermore, administration of human chorionic gonadotropin (HCG) and luteinizing hormone-releasing hormone analogue (LHRHa) can restore the reproduction of the transgenic fish line. Overall, we replaced the l h gene with an alligator cathelicidin transgene and then administered hormone therapy to move towards complete reproductive control of disease-resistant transgenic catfish in an environmentally responsible manner. This strategy not only effectively improves consumer-valued traits but also guards against unwanted introgression, providing a breakthrough in aquaculture genetics to confine fish reproduction and prevent the establishment of transgenic or domestic genotypes in the natural environment.

Graphical abstract

Keywords

Genome editing / ssODN / dsDNA / Antimicrobial peptide / Reproductive confinement / Aquaculture

Cite this article

Download citation ▾
Jinhai Wang, Baofeng Su, De Xing, Timothy J. Bruce, Shangjia Li, Logan Bern, Mei Shang, Andrew Johnson, Rhoda Mae C. Simora, Michael Coogan, Darshika U. Hettiarachchi, Wenwen Wang, Tasnuba Hasin, Jacob Al-Armanazi, Cuiyu Lu, Rex A. Dunham. Generation of Eco-Friendly and Disease-Resistant Channel Catfish (Ictalurus punctatus) Harboring the Alligator Cathelicidin Gene via CRISPR/Cas9 Engineering. Engineering, 2024, 39(8): 273‒286 https://doi.org/10.1016/j.eng.2023.12.005

References

[1]
J.A. Doudna, E. Charpentier. The new frontier of genome engineering with CRISPR-Cas9. Science, 346 (6213) (2014), Article 1258096.
[2]
F. Storici, J.R. Snipe, G.K. Chan, D.A. Gordenin, M.A. Resnick. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol Cell Biol, 26 (20) (2006), pp. 7645-7657.
[3]
F. Chen, S.M. Pruett-Miller, Y. Huang, M. Gjoka, K. Duda, J. Taunton, et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods, 8 (9) (2011), pp. 753-755.
[4]
B. Wefers, M. Meyer, O. Ortiz, M.H. de Angelis, J. Hansen, W. Wurst, et al. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci USA, 110 (10) (2013), pp. 3782-3787.
[5]
K. Yoshimi, Y. Kunihiro, T. Kaneko, H. Nagahora, B. Voigt, T. Mashimo. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun, 7 (2016), p. 10431.
[6]
M. Mehravar, A. Shirazi, M. Nazari, M. Banan. Mosaicism in CRISPR/Cas9-mediated genome editing. Dev Biol, 445 (2) (2019), pp. 156-162.
[7]
A. Boel, H. De Saffel, W. Steyaert, B. Callewaert, A. De Paepe, P.J. Coucke, et al. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis Model Mech, 11 (10) (2018), Article dmm035352.
[8]
Y. Hisano, T. Sakuma, S. Nakade, R. Ohga, S. Ota, H. Okamoto, et al. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas 9 system in zebrafish. Sci Rep, 5 (2015), p. 8841.
[9]
J.P. Zhang, X.L. Li, G.H. Li, W. Chen, C. Arakaki, G.D. Botimer, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol, 18 (2017), p. 35.
[10]
Y. Murakami, S. Ansai, A. Yonemura, M. Kinoshita. An efficient system for homology-dependent targeted gene integration in medaka (Oryzias latipes). Zoological Lett, 3 (2017), p. 10.
[11]
H. Ledford. Salmon approval heralds rethink of transgenic animals. Nature, 527 (7579) (2015), pp. 417-418.
[12]
E. Waltz. First genetically engineered salmon sold in Canada. Nature, 548 (7666) (2017), p. 148.
[13]
Japan embraces CRISPR-edited fish. Nat Biotechnology 2022;40:10.
[14]
J. Wang, B. Su, R.A. Dunham. Genome-wide identification of catfish antimicrobial peptides: a new perspective to enhance fish disease resistance. Rev Aquacult, 14 (4) (2022), pp. 2002-2022.
[15]
D. Xing, B. Su, M. Bangs, S. Li, J. Wang, L. Bern, et al. CRISPR/Cas9-mediate knock-in method can improve the expression and effect of transgene in P 1 generation of channel catfish (Ictalurus punctatus). Aquaculture, 560 (2022), Article 738531.
[16]
D. Xing, B. Su, S. Li, M. Bangs, D. Creamer, M. Coogan, et al. CRISPR/Cas9-mediated transgenesis of the Masu salmon (Oncorhynchus masou) elovl2 gene improves n-3 fatty acid content in channel catfish (Ictalurus punctatus). Mar Biotechnol, 24 (3) (2022), pp. 513-523.
[17]
R.A. Dunham, B. Su. Genetically Engineered Fish:Potential Impacts on Aquaculture, Biodiversity, and the Environment. A. Chaurasia, D.L. Hawksworth, M. Pessoa de Miranda (Eds.), GMOs:Implications for Biodiversity Conservation and Ecological Processes, Springer International Publishing, Berlin (2020), pp. 241-275.
[18]
Z. Yang, Y. Yu, Y.X. Tay, G.H. Yue. Genome editing and its applications in genetic improvement in aquaculture. Rev Aquacult, 14 (1) (2022), pp. 178-191.
[19]
G. Qin, Z. Qin, C. Lu, Z. Ye, A. Elaswad, M. Bangs, et al. Gene editing of the catfish gonadotropin-releasing hormone gene and hormone therapy to control the reproduction in channel catfish, Ictalurus punctatus. Biology, 11 (5) (2022), p. 649.
[20]
H.J. Grier. Cellular organization of the testis and spermatogenesis in fishes. Am Zool, 21 (2) (1981), pp. 345-357.
[21]
Y. Yamaguchi, J. Nagata, O. Nishimiya, T. Kawasaki, N. Hiramatsu, T. Todo. Molecular characterization of fshb and lhb subunits and their expression profiles in captive white-edged rockfish, Sebastes taczanowskii. Comp Biochem Physiol A Mol Integr Physiol, 261 (2021), Article 111055.
[22]
L. Chu, J. Li, Y. Liu, W. Hu, C.H.K. Cheng. Targeted gene disruption in zebrafish reveals noncanonical functions of LH signaling in reproduction. Mol Endocrinol, 28 (11) (2014), pp. 1785-1795.
[23]
Z. Qin, Y. Li, B. Su, Q. Cheng, Z. Ye, D.A. Perera, et al. Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation. Mar Biotechnol, 18 (2) (2016), pp. 255-263.
[24]
S. Akira, S. Uematsu, O. Takeuchi. Pathogen recognition and innate immunity. Cell, 124 (4) (2006), pp. 783-801.
[25]
G. Wang, X. Li, Z. Wang. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res, 44 (D1) (2016), pp. D1087-D1093.
[26]
J. Wang, A.E. Wilson, B. Su, R.A. Dunham. Functionality of dietary antimicrobial peptides in aquatic animal health: multiple meta-analyses. Anim Nutr, 12 (2023), pp. 200-214.
[27]
N. Mookherjee, M.A. Anderson, H.P. Haagsman, D.J. Davidson. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov, 19 (5) (2020), pp. 311-332.
[28]
A.L. Hilchie, K. Wuerth, R.E.W. Hancock. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol, 9 (12) (2013), pp. 761-768.
[29]
Y. Chen, S. Cai, X. Qiao, M. Wu, Z. Guo, R. Wang, et al. As-CATH1-6, novel cathelicidins with potent antimicrobial and immunomodulatory properties from Alligator sinensis, play pivotal roles in host antimicrobial immune responses. Biochem J, 474 (16) (2017), pp. 2861-2885.
[30]
R.M.C. Simora, S.J. Li, N.Y. Abass, J.S. Terhune, R.A. Dunham. Cathelicidins enhance protection of channel catfish, Ictalurus punctatus, and channel catfish ♀ × blue catfish, Ictalurus furcatus ♂ hybrid catfish against Edwarsiella ictaluri infection. J Fish Dis, 43 (12) (2020), pp. 1553-1562.
[31]
R.M.C. Simora, W. Wang, M. Coogan, N. El Husseini, J.S. Terhune, R.A. Dunham. Effectiveness of cathelicidin antimicrobial peptide against Ictalurid catfish bacterial pathogens. J Aquat Anim Health, 33 (3) (2021), pp. 178-189.
[32]
Z. Liu, S. Liu, J. Yao, L. Bao, J. Zhang, Y. Li, et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun, 7 (2016), p. 11757.
[33]
C. Mosimann, C.K. Kaufman, P. Li, E.K. Pugach, O.J. Tamplin, L.I. Zon. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development, 138 (1) (2011), pp. 169-177.
[34]
S. Bae, J. Park, J.S. Kim. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30 (10) (2014), pp. 1473-1475.
[35]
A. Elaswad, K. Khalil, Z. Ye, Z. Liu, S. Liu, E. Peatman, et al. Effects of CRISPR/Cas 9 dosage on TICAM1 and RBL gene mutation rate, embryonic development, hatchability and fry survival in channel catfish. Sci Rep, 8 (2018), p. 16499.
[36]
K. Khalil, M. Elayat, E. Khalifa, S. Daghash, A. Elaswad, M. Miller, et al. Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep, 7 (2017), p. 7301.
[37]
J.B. Armstrong, G.M. Malacinski. Developmental Biology of the Axolotl. Oxford University Press, New York City (1989).
[38]
P. Qiu, H. Shandilya, J.M. D’Alessio, K. O’Connor, J. Durocher, G.F. Gerard. Mutation detection using SurveyorTM nuclease. Biotechniques, 36 (4) (2004), pp. 702-707.
[39]
M. Coogan, V. Alston, B. Su, K. Khalil, A. Elaswad, M. Khan, et al. CRISPR/Cas-9 induced knockout of myostatin gene improves growth and disease resistance in channel catfish (Ictalurus punctatus). Aquaculture, 557 (2022), Article 738290.
[40]
K.B. Davis. Age at puberty of channel catfish, Ictalurus punctatus, controlled by thermoperiod. Aquaculture, 292 (3-4) (2009), pp. 244-247.
[41]
A. Menchaca, P.C. Dos Santos-Neto, M. Souza-Neves, F. Cuadro, A.P. Mulet, L. Tesson, et al. Otoferlin gene editing in sheep via CRISPR-assisted ssODN-mediated homology directed repair. Sci Rep, 10 (1) (2020), p. 5995.
[42]
Y. Kan, B. Ruis, T. Takasugi, E.A. Hendrickson. Mechanisms of precise genome editing using oligonucleotide donors. Genome Res, 27 (7) (2017), pp. 1099-1111.
[43]
S.M. Byrne, L. Ortiz, P. Mali, J. Aach, G.M. Church. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res, 43 (3) (2015), p. e21.
[44]
R.M.C. Simora, D. Xing, M.R. Bangs, W. Wang, X. Ma, B. Su, et al. CRISPR/Cas9-mediated knock-in of alligator cathelicidin gene in a non-coding region of channel catfish genome. Sci Rep, 10 (1) (2020), p. 22271.
[45]
C. McGaw, A.J. Garrity, G.Z. Munoz, J.R. Haswell, S. Sengupta, E. Keston-Smith, et al. Engineered Cas12i 2 is a versatile high-efficiency platform for therapeutic genome editing. Nat Commun, 13 (1) (2022), p. 2833.
[46]
J.J. Kelly, M. Saee-Marand, N.N. Nyström, M.M. Evans, Y. Chen, F.M. Martinez, et al. Safe harbor-targeted CRISPR-Cas 9 homology-independent targeted integration for multimodality reporter gene-based cell tracking. Sci Adv, 7 (4) (2021), Article eabc3791.
[47]
C. Wang, Y. Qu, J.K.W. Cheng, N.W. Hughes, Q. Zhang, M. Wang, et al. dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nat Cell Biol, 24 (2) (2022), pp. 268-278.
[48]
F.A. Ran, P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, F. Zhang. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 8 (11) (2013), pp. 2281-2308.
[49]
F. Heigwer, G. Kerr, M. Boutros. E-CRISP: fast CRISPR target site identification. Nat Methods, 11 (2) (2014), pp. 122-123.
[50]
X. Zhang, L.Y. Tee, X. Wang, Q. Huang, S. Yang. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids, 4 (2015), p. e264.
[51]
V. Pattanayak, S. Lin, J.P. Guilinger, E. Ma, J.A. Doudna, D.R. Liu. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 31 (9) (2013), pp. 839-843.
[52]
S.W. Cho, S. Kim, Y. Kim, J. Kweon, H.S. Kim, S. Bae, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 24 (1) (2014), pp. 132-141.
[53]
B. Shen, J. Zhang, H. Wu, J. Wang, K. Ma, Z. Li, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res, 23 (5) (2013), pp. 720-723.
[54]
V. Iyer, B. Shen, W. Zhang, A. Hodgkins, T. Keane, X. Huang, et al. Off-target mutations are rare in Cas9-modified mice. Nat Methods, 12 (6) (2015), p. 479.
[55]
T. Wang, J.J. Wei, D.M. Sabatini, E.S. Lander. Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343 (6166) (2014), pp. 80-84.
[56]
D. Li, Z. Qiu, Y. Shao, Y. Chen, Y. Guan, M. Liu, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol, 31 (8) (2013), pp. 681-683.
[57]
W. Li, F. Teng, T. Li, Q. Zhou. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol, 31 (8) (2013), pp. 684-686.
[58]
D. Oliver, S. Yuan, H. McSwiggin, W. Yan. Pervasive genotypic mosaicism in founder mice derived from genome editing through pronuclear injection. PLoS One, 10 (6) (2015), Article e0129457.
[59]
A. Raveux, S. Vandormael-Pournin, M. Cohen-Tannoudji. Optimization of the production of knock-in alleles by CRISPR/Cas 9 microinjection into the mouse zygote. Sci Rep, 7 (2017), p. 42661.
[60]
L.E. Jao, S.R. Wente, W. Chen. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA, 110 (34) (2013), pp. 13904-13909.
[61]
T.O. Auer, K. Duroure, A. De Cian, J.P. Concordet, F. Del Bene. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res, 24 (1) (2014), pp. 142-153.
[62]
E.M. Hallerman, R. Dunham, R.D. Houston, M. Walton, A. Wargelius, D. Wray-Cahen. Towards production of genome-edited aquaculture species. Rev Aquac, 15 (2) (2022), pp. 404-408.
[63]
A. Wargelius, S. Leininger, K.O. Skaftnesmo, L. Kleppe, E. Andersson, G.L. Taranger, et al. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep, 6 (2016), p. 21284.
[64]
S. Gay, J. Bugeon, A. Bouchareb, L. Henry, C. Delahaye, F. Legeai, et al. MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet, 14 (9) (2018), Article e1007593.
[65]
B. Su, E. Peatman, M. Shang, R. Thresher, P. Grewe, J.G. Patil, et al. Expression and knockdown of primordial germ cell genes, vasa, nanos and dead end in common carp (Cyprinus carpio) embryos for transgenic sterilization and reduced sexual maturity. Aquaculture, 420 (2014), pp. S72-S84.
[66]
B. Su, M. Shang, P.M. Grewe, J.G. Patil, E. Peatman, D.A. Perera, et al. Suppression and restoration of primordial germ cell marker gene expression in channel catfish, Ictalurus punctatus, using knockdown constructs regulated by copper transport protein gene promoters: Potential for reversible transgenic sterilization. Theriogenology, 84 (9) (2015), pp. 1499-1512.
AI Summary AI Mindmap
PDF(2550 KB)

Accesses

Citations

Detail

Sections
Recommended

/