Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions

Yongkui Li, Qinyue Wang, Xiyu Pan, Jian Zuo, Jinying Xu, Yilong Han

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 261-275.

PDF(3158 KB)
PDF(3158 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 261-275. DOI: 10.1016/j.eng.2023.12.006
Research
Review

Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions

Author information +
History +

Abstract

Effective engineering asset management (EAM) is critical to economic development and improving livability in society, but its complexity often impedes optimal asset functionalities. Digital twins (DTs) could revolutionize the EAM paradigm by bidirectionally linking the physical and digital worlds in real time. There is great industrial and academic interest in DTs for EAM. However, previous review studies have predominately focused on technical aspects using limited life-cycle perspectives, failing to holistically synthesize DTs for EAM from the managerial point of view. Based on a systematic literature review, we introduce an analytical framework for describing DTs for EAM, which encompasses three levels: DT 1.0 for technical EAM, DT 2.0 for technical−human EAM, and DT 3.0 for technical−environmental EAM. Using this framework, we identify what is known, what is unknown, and future directions at each level. DT 1.0 addresses issues of asset quality, progress, and cost management, generating technical value. It lacks multi-objective self-adaptive EAM, however, and suffers from high application cost. It is imperative to enable closed-loop EAM in order to provide various functional services with affordable DT 1.0. DT 2.0 accommodates issues of human−machine symbiosis, safety, and flexibility management, generating managerial value beyond the technical performance improvement of engineering assets. However, DT 2.0 currently lacks the automation and security of human−machine interactions and the managerial value related to humans is not prominent enough. Future research needs to align technical and managerial value with highly automated and secure DT 2.0. DT 3.0 covers issues of participatory governance, organization management, sustainable development, and resilience enhancement, generating macro social value. Yet it suffers from organizational fragmentation and can only address limited social governance issues. Numerous research opportunities exist to coordinate different stakeholders. Similarly, future research opportunities exist to develop DT 3.0 in a more open and complex system.

Graphical abstract

Keywords

Engineering asset management / Digital twin / Socio-technical theory / Structure−process−outcome / Literature review

Cite this article

Download citation ▾
Yongkui Li, Qinyue Wang, Xiyu Pan, Jian Zuo, Jinying Xu, Yilong Han. Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions. Engineering, 2024, 41(10): 261‒275 https://doi.org/10.1016/j.eng.2023.12.006

References

[1]
J.M. Bauer, P.M. Herder. Designing socio-technical systems. A. Meijers ( Ed.), Philosophy of technology and engineering sciences, North-Holland, Amsterdam (2009), pp. 601-630.
[2]
K. El-Akruti, R. Dwight, T. Zhang. The strategic role of engineering asset management. Int J Prod Econ, 146 (1) (2013), pp. 227-239.
[3]
P.E.D. Love, J. Matthews. The ‘how’ of benefits management for digital technology: from engineering to asset management. Autom Construct, 107 (2019), p. 102930.
[4]
B. Genge, C. Siaterlis, I. Nai Fovino, M. Masera. A cyber-physical experimentation environment for the security analysis of networked industrial control systems. Comput Electr Eng, 38 (5) (2012), pp. 1146-1161.
[5]
J. Zhou, S. Zhang, M. Gu. Revisiting digital twins: origins, fundamentals, and practices. Front Eng Manag, 9 (4) (2022), pp. 668-676.
[6]
M. Grieves, J. Vickers. Digital twin:mitigating unpredictable, undesirable emergent behavior in complex systems. F.J. Kahlen, S. Flumerfelt, A. Alves (Eds.), Transdisciplinary perspectives on complex systems, Springer International Publishing, Berlin (2017), pp. 85-113.
[7]
N. Mohammadi, J.E. Taylor. Thinking fast and slow in disaster decision-making with smart city digital twins. Nat Comput Sci, 1 (12) (2021), pp. 771-773.
[8]
L. Wang, T. Deng, Z.J.M. Shen, H. Hu, Y. Qi. Digital twin-driven smart supply chain. Front Eng Manag, 9 (1) (2022), pp. 56-70.
[9]
C. Human, A.H. Basson, K. Kruger. A design framework for a system of digital twins and services. Comput Ind, 144 (2023), p. 103796.
[10]
S.A. Niederer, M.S. Sacks, M. Girolami, K. Willcox. Scaling digital twins from the artisanal to the industrial. Nat Comput Sci, 1 (5) (2021), pp. 313-320.
[11]
D. Cearley, M. Walker, B. Burke. Gartner top 10 strategic technology trends for 2017. Gartner Inc., Stamford (2017).
[12]
D. Cearley, B. Burke, S. Searle, M. Walker. Gartner top 10 strategic technology trends for 2018. Gartner Inc., Stamford (2017).
[13]
D. Cearley, B. Burke. Gartner top 10 strategic technology trends for 2019. Gartner Inc., Stamford (2018).
[14]
G. van der Heiden, D. Groombridge, B. Willemsen, A. Chandrasekaran. Gartner top 10 strategic technology trends for 2023. Gartner Inc., Stamford (2022).
[15]
A. Sharma, E. Kosasih, J. Zhang, A. Brintrup, A. Calinescu. Digital twins: state of the art theory and practice, challenges, and open research questions. J Ind Inf Integr, 30 (2022), p. 100383.
[16]
K. Arisekola, K. Madson. Digital twins for asset management: social network analysis-based review. Autom Construct, 150 (2023), p. 104833.
[17]
D.G. Broo, M. Bravo-Haro, J. Schooling. Design and implementation of a smart infrastructure digital twin. Autom Construct, 136 (2022), p. 104171.
[18]
X. Zhou, X. Xu, W. Liang, Z. Zeng, S. Shimizu, L.T. Yang, et al. Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems. IEEE Trans Industr Inform, 18 (2) (2022), pp. 1377-1386.
[19]
A. Khan, F. Shahid, C. Maple, A. Ahmad, G. Jeon. Toward smart manufacturing using spiral digital twin framework and twinchain. IEEE Trans Industr Inform, 18 (2) (2022), pp. 1359-1366.
[20]
P. Bauer, B. Stevens, W. Hazeleger. A digital twin of Earth for the green transition. Nat Clim Chang, 11 (2) (2021), pp. 80-83.
[21]
L. Wang, M. Törngren, M. Onori. Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst, 37 (2015), pp. 517-527.
[22]
M. Pregnolato, S. Gunner, E. Voyagaki, R. De Risi, N. Carhart, G. Gavriel, et al. Towards civil engineering 4.0: concept, workflow and application of digital twins for existing infrastructure. Autom Construct, 141 (2022), p. 104421.
[23]
F. Tao, Q. Qi, L. Wang, A.Y.C. Nee. Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering, 5 (4) (2019), pp. 653-661.
[24]
P.E.D. Love, I. Simpson, A. Hill, C. Standing. From justification to evaluation: building information modeling for asset owners. Autom Construct, 35 (2013), pp. 208-216.
[25]
X. Liu, F. Liu, X. Ren. Firms’ digitalization in manufacturing and the structure and direction of green innovation. J Environ Manage, 335 (2023), p. 117525.
[26]
W. Xiong, H. Fan, L. Ma, C. Wang. Challenges of human-machine collaboration in risky decision-making. Front Eng Manag, 9 (1) (2022), pp. 89-103.
[27]
A. Tzachor, S. Sabri, C.E. Richards, A. Rajabifard, M. Acuto. Potential and limitations of digital twins to achieve the sustainable development goals. Nat Sustain, 5 (10) (2022), pp. 822-829.
[28]
Project Group of Global Engineering Fronts of Chinese Academy of Engineering.Engineering Fronts 2022. Beijing: Chinese Academy of Engineering; 2022.
[29]
M. Schmidt, M.V. Moreno, A. Schülke, K. Macek, K. Mařík, A.G. Pastor. Optimizing legacy building operation: the evolution into data-driven predictive cyber-physical systems. Energy Build, 148 (2017), pp. 257-279.
[30]
H. Dang, M. Tatipamula, H.X. Nguyen. Cloud-based digital twinning for structural health monitoring using deep learning. IEEE Trans Industr Inform, 18 (6) (2022), pp. 3820-3830.
[31]
T. Greif, N. Stein, C.M. Flath. Peeking into the void: digital twins for construction site logistics. Comput Ind, 121 (2020), p. 103264.
[32]
Q. Min, Y. Lu, Z. Liu, C. Su, B. Wang. Machine learning based digital twin framework for production optimization in petrochemical industry. Int J Inf Manage, 49 (2019), pp. 502-519.
[33]
F. Jiang, L. Ma, T. Broyd, K. Chen, H. Luo. Underpass clearance checking in highway widening projects using digital twins. Autom Construct, 141 (2022), p. 104406.
[34]
Y. Jiang, M. Li, M. Li, X. Liu, R.Y. Zhong, W. Pan, et al. Digital twin-enabled real-time synchronization for planning, scheduling, and execution in precast on-site assembly. Autom Construct, 141 (2022), p. 104397.
[35]
Y. Jiang, M. Li, D. Guo, W. Wu, R.Y. Zhong, G.Q. Huang. Digital twin-enabled smart modular integrated construction system for on-site assembly. Comput Ind, 136 (2022), p. 103594.
[36]
F. Jiang, L. Ma, T. Broyd, K. Chen. Digital twin and its implementations in the civil engineering sector. Autom Construct, 130 (2021), p. 103838.
[37]
D.G.J. Opoku, S. Perera, R. Osei-Kyei, M. Rashidi. Digital twin application in the construction industry: a literature review. J Build Eng, 40 (2021), p. 102726.
[38]
C. Boje, A. Guerriero, S. Kubicki, Y. Rezgui. Towards a semantic construction digital twin: directions for future research. Autom Construct, 114 (2020), p. 103179.
[39]
B.A. Kadir, O. Broberg, C.S. da Conceição. Current research and future perspectives on human factors and ergonomics in Industry 4.0. Comput Ind Eng, 137 (2019), p. 106004.
[40]
E. Sackey, M. Tuuli, A. Dainty. Sociotechnical systems approach to BIM implementation in a multidisciplinary construction context. J Manage Eng, 31 (1) (2015), p. A4014005.
[41]
T.J. Kull, S.C. Ellis, R. Narasimhan. Reducing behavioral constraints to supplier integration: a socio-technical systems perspective. J Supply Chain Manag, 49 (1) (2013), pp. 64-86.
[42]
E.L. Trist, K.W. Bamforth. Some social and psychological consequences of the longwall method of coal-getting: an examination of the psychological situation and defences of a work group in relation to the social structure and technological content of the work system. Hum Relat, 4 (1) (1951), pp. 3-38.
[43]
T.L. Griffith, D.J. Dougherty. Beyond socio-technical systems: introduction to the special issue. J Eng Technol Manage, 18 (3-4) (2001), pp. 207-218.
[44]
G.S. Easton, E.D. Rosenzweig. Team leader experience in improvement teams: a social networks perspective. J Oper Manage, 37 (2015), pp. 13-30.
[45]
A. Donabedian. Evaluating the quality of medical care. Milbank Mem Fund Q, 44 (3) (1966), pp. 166-206.
[46]
A. Donabedian. The quality of care: how can it be assessed?. JAMA, 260 (12) (1988), pp. 1743-1748.
[47]
A. Donabedian. The quality of medical care. Science, 200 (4344) (1978), pp. 856-864.
[48]
G. Liu, N. Li, J. Deng, Y. Wang, J. Sun, Y. Huang. The SOLIDS 6G mobile network architecture: driving forces, features, and functional topology. Engineering, 8 (2022), pp. 42-59.
[49]
T. Cornford, G. Doukidis, D. Forster. Experience with a structure, process and outcome framework for evaluating an information system. Omega, 22 (5) (1994), pp. 491-504.
[50]
M. Mariani, M. Borghi. Industry 4.0: a bibliometric review of its managerial intellectual structure and potential evolution in the service industries. Technol Forecast Soc Change, 149 (2019), p. 119752.
[51]
V. Venkatesh, H. Bala, T.A. Sykes. Impacts of information and communication technology implementations on employees’ jobs in service organizations in India: a multi-method longitudinal field study. Prod Oper Manag, 19 (5) (2010), pp. 591-613.
[52]
R.W. Robichau, L.E. Lynn Jr. The implementation of public policy: still the missing link. Policy Stud J, 37 (1) (2009), pp. 21-36.
[53]
J.R. Minnery. Modelling coordination. Aust J Public Adm, 47 (3) (1988), pp. 253-262.
[54]
M.A. Strosberg, E. Gefenas, A. Famenka. Research ethics review: identifying public policy and program gaps. J Empir Res Hum Res Ethics, 9 (2) (2014), pp. 3-11.
[55]
S. Tuzovic. Investigating the concept of potential quality: an exploratory study in the real estate industry. Manag Serv Qual Int J, 18 (3) (2008), pp. 255-271.
[56]
A. Ezenwa, A. Whiteing, D. Johnson, A. Oledinma, E.A. Ejem. Development of strategies to improve information communication technology diffusion in Nigeria’s logistics and transport industry: adaptation of structure-process-outcome model. Int J Integr Supply Manag, 14 (4) (2021), pp. 363-391.
[57]
D. Mourtzis, N. Panopoulos, J. Angelopoulos, B. Wang, L. Wang. Human centric platforms for personalized value creation in metaverse. J Manuf Syst, 65 (2022), pp. 653-659.
[58]
M. Jbair, B. Ahmad, C. Maple, R. Harrison. Threat modelling for industrial cyber physical systems in the era of smart manufacturing. Comput Ind, 137 (2022), p. 103611.
[59]
J.J. Hunhevicz, M. Motie, D.M. Hall. Digital building twins and blockchain for performance-based (smart) contracts. Autom Construct, 133 (2022), p. 103981.
[60]
L. Chang, L. Zhang, C. Fu, Y.W. Chen. Transparent digital twin for output control using belief rule base. IEEE Trans Cybern, 52 (10) (2021), pp. 10364-10378.
[61]
B. Keskin, B. Salman, O. Koseoglu. Architecting a BIM-based digital twin platform for airport asset management: a model-based system engineering with SysML approach. J Constr Eng Manage, 148 (5) (2022), p. 04022020.
[62]
D. Dan, Y. Ying, L. Ge. Digital twin system of bridges group based on machine vision fusion monitoring of bridge traffic load. IEEE Trans Intell Transp Syst, 23 (11) (2021), pp. 22190-22205.
[63]
C. Zhou, H. Luo, W. Fang, R. Wei, L. Ding. Cyber-physical-system-based safety monitoring for blind hoisting with the internet of things: a case study. Autom Construct, 97 (2019), pp. 138-150.
[64]
F. Longo, L. Nicoletti, A. Padovano. Ubiquitous knowledge empowers the smart factory: the impacts of a Service-oriented digital twin on enterprises’ performance. Annu Rev Contr, 47 (2019), pp. 221-236.
[65]
Y. Lu, X. Xu. Resource virtualization: a core technology for developing cyber-physical production systems. J Manuf Syst, 47 (2018), pp. 128-140.
[66]
O. El Marai, T. Taleb, L. Song. Roads infrastructure digital twin: a step toward smarter cities realization. IEEE Netw, 35 (2) (2020), pp. 136-143.
[67]
K. Lin, Y.L. Xu, X. Lu, Z. Guan, J. Li. Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes. Autom Construct, 123 (2021), p. 103547.
[68]
A. Villalonga, E. Negri, G. Biscardo, F. Castano, R.E. Haber, L. Fumagalli, et al. A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins. Annu Rev Contr, 51 (2021), pp. 357-373.
[69]
S.Z. Seilov, A.A. Seilov, D.S. Shyngisov, V.Y. Goikhman, A.K. Levakov, N.A. Sokolov, et al. The concept of building a network of digital twins to increase the efficiency of complex telecommunication systems. Complexity, 2021 (2021), p. 9480235.
[70]
W. Kim, G. Lee, H. Son, H. Choi, B.D. Youn. Estimation of fatigue crack initiation and growth in engineering product development using a digital twin approach. Reliab Eng Syst Saf, 226 (2022), p. 108721.
[71]
S. Kalantari, S. Pourjabar, J. Kan. Developing and user-testing a “digital twins” prototyping tool for architectural design. Autom Construct, 135 (2022), p. 104140.
[72]
M. Li, Q. Lu, S. Bai, M. Zhang, H. Tian, L. Qin. Digital twin-driven virtual sensor approach for safe construction operations of trailing suction hopper dredger. Autom Construct, 132 (2021), p. 103961.
[73]
Z. Lei, H. Zhou, W. Hu, G.P. Liu, S. Guan, X. Feng. Toward a web-based digital twin thermal power plant. IEEE Trans Industr Inform, 18 (3) (2022), pp. 1716-1725.
[74]
M. Chiachio, M. Megia, J. Chiachio, J. Fernandez, M.L. Jalon. Structural digital twin framework: formulation and technology integration. Autom Construct, 140 (2022), p. 104333.
[75]
Q. Lu, X. Xie, A.K. Parlikad, J.M. Schooling. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom Construct, 118 (2020), p. 103277.
[76]
F. Jiang, Y. Ding, Y. Song, F. Geng, Z. Wang. Digital twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: application to segmental orthotropic steel deck specimen. Eng Struct, 241 (15) (2021), p. 112461.
[77]
M. Liao, G. Renaud, Y. Bombardier. Airframe digital twin technology adaptability assessment and technology demonstration. Eng Fract Mech, 225 (15) (2020), p. 106793.
[78]
D. Lee, S.H. Lee, N. Masoud, M.S. Krishnan, V.C. Li. Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Autom Construct, 127 (2021), p. 103688.
[79]
J. Zhang, J.C.P. Cheng, W. Chen, K. Chen. Digital twins for construction sites: concepts, LoD definition, and applications. J Manage Eng, 38 (2) (2022), p. 04021094.
[80]
K.T. Park, Y.H. Son, S.D. Noh. The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control. Int J Prod Res, 59 (19) (2021), pp. 5721-5742.
[81]
G. Xie, K. Yang, C. Xu, R. Li, S. Hu. Digital twinning based adaptive development environment for automotive cyber-physical systems. IEEE Trans Industr Inform, 18 (2) (2022), pp. 1387-1396.
[82]
W. Wang, H. Guo, X. Li, S. Tang, Y. Li, L. Xie, et al. BIM information integration based VR modeling in digital twins in Industry 5.0. J Ind Inf Integr, 28 (2022), p. 100351.
[83]
W. Booyse, D.N. Wilke, S. Heyns. Deep digital twins for detection, diagnostics and prognostics. Mech Syst Signal Process, 140 (2020), p. 106612.
[84]
W. Wang, H. Guo, X. Li, S. Tang, J. Xia, Z. Lv. Deep learning for assessment of environmental satisfaction using BIM big data in energy efficient building digital twins. Sustain Energy Technol Assess, 50 (2022), p. 101897.
[85]
R. Tariq, C.E. Torres-Aguilar, N.A. Sheikh, T. Ahmad, J. Xamán, A. Bassam. Data engineering for digital twining and optimization of naturally ventilated solar facade with phase changing material under global projection scenarios. Renew Energy, 187 (2022), pp. 1184-1203.
[86]
S. Huang, G. Wang, Y. Yan. Building blocks for digital twin of reconfigurable machine tools from design perspective. Int J Prod Res, 60 (3) (2022), pp. 942-956.
[87]
K.T. Park, S.W. Jeon, S.D. Noh. Digital twin application with horizontal coordination for reinforcement-learning-based production control in a re-entrant job shop. Int J Prod Res, 60 (7) (2022), pp. 2151-2167.
[88]
C. Kellenbrink, N. Nübel, A. Schnabel, P. Gilge, J.R. Seume, B. Denkena, et al. A regeneration process chain with an integrated decision support system for individual regeneration processes based on a virtual twin. Int J Prod Res, 60 (13) (2022), pp. 4137-4158.
[89]
J. Li, Y. Zhang, C. Qian. The enhanced resource modeling and real-time transmission technologies for digital twin based on QoS considerations. Robot Comput-Integr Manuf, 75 (2022), p. 102284.
[90]
E. Negri, V. Pandhare, L. Cattaneo, J. Singh, M. Macchi, J. Lee. Field-synchronized digital twin framework for production scheduling with uncertainty. J Intell Manuf, 32 (4) (2021), pp. 1207-1228.
[91]
F. Tao, F. Sui, A. Liu, Q. Qi, M. Zhang, B. Song, et al. Digital twin-driven product design framework. Int J Prod Res, 57 (12) (2019), pp. 3935-3953.
[92]
D. Savić. Digital water developments and lessons learned from automation in the car and aircraft industries. Engineering, 9 (2022), pp. 35-41.
[93]
A. Murray, J. Rhymer, D.G. Sirmon. Humans and technology: forms of conjoined agency in organizations. Acad Manage Rev, 46 (3) (2021), pp. 552-571.
[94]
J. Xie, S. Liu, X. Wang. Framework for a closed-loop cooperative human cyber-physical system for the mining industry driven by VR and AR: MHCPS. Comput Ind Eng, 168 (2022), p. 108050.
[95]
J. Liu, J. Liu, C. Zhuang, Z. Liu, T. Miao. Construction method of shop-floor digital twin based on MBSE. J Manuf Syst, 60 (2021), pp. 93-118.
[96]
M.M. Abdelrahman, C. Miller. Targeting occupant feedback using digital twins: adaptive spatial-temporal thermal preference sampling to optimize personal comfort models. Build Environ, 218 (2022), p. 109090.
[97]
X. Liu, L. Zheng, Y. Wang, W. Yang, Z. Jiang, B. Wang, et al. Human-centric collaborative assembly system for large-scale space deployable mechanism driven by digital twins and wearable AR devices. J Manuf Syst, 65 (2022), pp. 720-742.
[98]
V.M. Gnecco, F. Vittori, A.L. Pisello. Digital twins for decoding human-building interaction in multi-domain test-rooms for environmental comfort and energy saving via graph representation. Energy Build, 279 (15) (2023), p. 112652.
[99]
J. Du, Q. Zhu, Y. Shi, Q. Wang, Y. Lin, D. Zhao. Cognition digital twins for personalized information systems of smart cities: proof of concept. J Manage Eng, 36 (2) (2020), p. 04019052.
[100]
B. Cheng, C. Fan, H. Fu, J. Huang, H. Chen, X. Luo. Measuring and computing cognitive statuses of construction workers based on electroencephalogram: a critical review. IEEE Trans Comput Soc Syst, 9 (6) (2022), pp. 1644-1659.
[101]
Y. Lu, J.S. Adrados, S.S. Chand, L. Wang. Humans are not machines—anthropocentric human-machine symbiosis for ultra-flexible smart. Manuf Eng, 7 (6) (2021), pp. 734-737.
[102]
S. Wu, L. Hou, G. Zhang, H. Chen. Real-time mixed reality-based visual warning for construction workforce safety. Autom Construct, 139 (2022), p. 104252.
[103]
W. Jiang, L. Ding, C. Zhou.Digital twin: stability analysis for tower crane hoisting safety with a scale model. Autom Construct, 138 (2022), p. 104257.
[104]
Y. Pan, L. Zhang.A BIM-data mining integrated digital twin framework for advanced project management. Autom Construct, 124 (2021), p. 103564.
[105]
X. Yuan, C.J. Anumba, M.K. Parfitt. Cyber-physical systems for temporary structure monitoring. Autom Construct, 66 (2016), pp. 1-14.
[106]
J. Liu, L. Zhang, C. Li, J. Bai, H. Lv, Z. Lv. Blockchain-based secure communication of intelligent transportation digital twins system. IEEE Trans Intell Transp Syst, 23 (11) (2022), pp. 22630-22640.
[107]
T. Huynh-The, Q.V. Pham, X.Q. Pham, T.T. Nguyen, Z. Han, D.S. Kim.Artificial intelligence for the metaverse: a survey. Eng Appl Artif Intell, 117 (2023), p. 105581.
[108]
A.A. Akanmu, J. Olayiwola, O. Ogunseiju, D. McFeeters.Cyber-physical postural training system for construction workers. Autom Construct, 117 (2020), p. 103272.
[109]
F. Hu, X. Qiu, G. Jing, J. Tang, Y. Zhu. Digital twin-based decision making paradigm of raise boring method. J Intell Manuf, 34 (5) (2022), pp. 2387-2405.
[110]
Y. Jiang, X. Liu, K. Kang, Z. Wang, R.Y. Zhong, G.Q. Huang.Blockchain-enabled cyber-physical smart modular integrated construction. Comput Ind, 133 (2021), p. 103553.
[111]
M. Shahinmoghadam, W. Natephra, A. Motamedi.BIM- and IoT-based virtual reality tool for real-time thermal comfort assessment in building enclosures. Build Environ, 199 (15) (2021), p. 107905.
[112]
M.M. Abdelrahman, A. Chong, C. Miller.Personal thermal comfort models using digital twins: preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec. Build Environ, 207 (2022), p. 108532.
[113]
P.D.U. Coronado, R. Lynn, W. Louhichi, M. Parto, E. Wescoat, T. Kurfess. Part data integration in the shop floor digital twin: mobile and cloud technologies to enable a manufacturing execution system. J Manuf Syst, 48 (2018), pp. 25-33.
[114]
M. Liu, B. Zhang, J. Bi. Appreciating the role of big data in the modernization of environmental governance. Front Eng Manag, 9 (1) (2022), pp. 163-169.
[115]
E. O’Dwyer, I. Pan, R. Charlesworth, S. Butler, N. Shah.Integration of an energy management tool and digital twin for coordination and control of multi-vector smart energy systems. Sustain Cities Soc, 62 (2020), p. 102412.
[116]
C. Meske, K.S. Osmundsen, I. Junglas. Designing and implementing digital twins in the energy grid sector. MIS Q Exec, 20 (3) (2021), pp. 183-198.
[117]
L. Deren, Y. Wenbo, S. Zhenfeng.Smart city based on digital twins. Comput Urban Soc, 1 (2021), p. 4.
[118]
X. Chen, X. Tang, X. Xu. Digital technology-driven smart society governance mechanism and practice exploration. Front Eng Manag, 10 (2) (2023), pp. 319-338.
[119]
J. Grübel, T. Thrash, L. Aguilar, M. Gath-Morad, J. Chatain, R.W. Sumner, et al. The Hitchhiker’s guide to fused twins: a review of access to digital twins in situ in smart cities. Remote Sens, 14 (13) (2022), p. 3095.
[120]
B. Wang, F. Tao, X. Fang, C. Liu, Y. Liu, T. Freiheit. Smart manufacturing and intelligent manufacturing: a comparative review. Engineering, 7 (6) (2021), pp. 738-757.
[121]
C. Fan, C. Zhang, A. Yahja, A. Mostafavi.Disaster city digital twin: a vision for integrating artificial and human intelligence for disaster management. Int J Inf Manage, 56 (2021), p. 102049.
[122]
S. Nativi, P. Mazzetti, M. Craglia.Digital ecosystems for developing digital twins of the earth: the destination earth case. Remote Sens, 13 (11) (2021), p. 2119.
[123]
Y. Ham, J. Kim.Participatory sensing and digital twin city: updating virtual city models for enhanced risk-informed decision-making. J Manage Eng, 36 (3) (2020), p. 04020005.
[124]
G. White, A. Zink, L. Codeca, S. Clarke. A digital twin smart city for citizen feedback. Cities, 110 (2021), p. 103064.
[125]
E. Yildiz, C. Møller, A. Bilberg. Conceptual foundations and extension of digital twin-based virtual factory to virtual enterprise. Int J Adv Manuf Technol, 121 (3-4) (2022), pp. 2317-2333.
[126]
Y. Lu, Z. Liu, Q. Min. A digital twin-enabled value stream mapping approach for production process reengineering in SMEs. Int J Comput Integrated Manuf, 34 (7-8) (2021), pp. 764-782.
[127]
Q. Lu, A.K. Parlikad, P. Woodall, G. Don Ranasinghe, X. Xie, Z. Liang, et al. Developing a digital twin at building and city levels: case study of west cambridge campus. J Manage Eng, 36 (3) (2020), p. 05020004.
[128]
K. Zhang, H. Chen, H.N. Dai, H. Liu, Z. Lin. SpoVis: decision support system for site selection of sports facilities in digital twinning cities. IEEE Trans Industr Inform, 18 (2) (2022), pp. 1424-1434.
[129]
J. Park, W. Choi, T. Jeong, J. Seo. Digital twins and land management in Republic of Korea. Land Use Policy, 124 (2023), p. 106442.
[130]
W. Huang, Y. Zhang, W. Zeng.Development and application of digital twin technology for integrated regional energy systems in smart cities. Sustain Comput Inform Syst, 36 (2022), p. 100781.
[131]
A. Lee, K.W. Lee, K.H. Kim, S.W. Shin.A geospatial platform to manage large-scale individual mobility for an urban digital twin platform. Remote Sens, 14 (3) (2022), p. 723.
[132]
Z. Bi, C.W.J. Zhang, C. Wu, L. Li.New digital triad (DT-II) concept for lifecycle information integration of sustainable manufacturing systems. J Ind Inf Integr, 26 (2022), p. 100316.
[133]
M. Suvarna, K.S. Yap, W. Yang, J. Li, Y.T. Ng, X. Wang. Cyber-physical production systems for data-driven, decentralized, and secure manufacturing—a perspective. Engineering, 7 (9) (2021), pp. 1212-1223.
[134]
Qin Y, Cao Z, Sun Y, Kou L, Zhao X, Wu Y, et al. Research on active safety methodologies for intelligent railway systems. Engineering, In press.
[135]
T.G. Ritto, F.A. Rochinha.Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech Syst Signal Process, 155 (16) (2021), p. 107614.
[136]
J. Zhang, H.H.L. Kwok, H. Luo, J.C.K. Tong, J.C.P. Cheng.Automatic relative humidity optimization in underground heritage sites through ventilation system based on digital twins. Build Environ, 216 (2022), p. 108999.
[137]
J.C. Licklider. Man-computer symbiosis. IRE Trans Hum Factors Electron, HFE-1 (1) (1960), pp. 4-11.
[138]
V. Mothukuri, P. Khare, R.M. Parizi, S. Pouriyeh, A. Dehghantanha, G. Srivastava. Federated-learning-based anomaly detection for IoT security attacks. IEEE Internet Things J, 9 (4) (2021), pp. 2545-2554.
[139]
Z. Yang, M. Chen, K.K. Wong, H.V. Poor, S. Cui. Federated learning for 6G: applications, challenges, and opportunities. Engineering, 8 (2022), pp. 33-41.
[140]
J. Xu, W. Lu, L. Wu, J. Lou, X. Li.Balancing privacy and occupational safety and health in construction: a blockchain-enabled P-OSH deployment framework. Saf Sci, 154 (2022), p. 105860.
[141]
C. Altun, B. Tavli, H. Yanikomeroglu. Liberalization of digital twins of IoT-enabled home appliances via blockchains and absolute ownership rights. IEEE Commun Mag, 57 (12) (2019), pp. 65-71.
[142]
H. Naderi, A. Shojaei.Digital twinning of civil infrastructures: current state of model architectures, interoperability solutions, and future prospects. Autom Construct, 149 (2023), p. 104785.
[143]
M. Liu, S. Fang, H. Dong, C. Xu. Review of digital twin about concepts, technologies, and industrial applications. J Manuf Syst, 58 (2021), pp. 346-361.
[144]
R. Parmar, A. Leiponen, L.D.W. Thomas. Building an organizational digital twin. Bus Horiz, 63 (6) (2020), pp. 725-736.
[145]
T. Nochta, L. Wan, J.M. Schooling, A.K. Parlikad. A socio-technical perspective on urban analytics: the case of city-scale digital twins. J Urban Technol, 28 (1-2) (2021), pp. 263-287.
[146]
B.Y. Ravid, M. Aharon-Gutman. The social digital twin: the social turn in the field of smart cities. Environ Plan B Urban Anal City Sci, 50 (6) (2022), pp. 1455-1470.
[147]
X. Xu, Y. Lu, B. Vogel-Heuser, L. Wang. Industry 4.0 and Industry 5.0—inception, conception and perception. J Manuf Syst, 61 (2021), pp. 530-535.
AI Summary AI Mindmap
PDF(3158 KB)

Accesses

Citations

Detail

Sections
Recommended

/