Advanced Compressed Air Energy Storage Systems: Fundamentals and Applications

Xinjing Zhang, Ziyu Gao, Bingqian Zhou, Huan Guo, Yujie Xu, Yulong Ding, Haisheng Chen

Engineering ›› 2024, Vol. 34 ›› Issue (3) : 246-269.

PDF(7161 KB)
PDF(7161 KB)
Engineering ›› 2024, Vol. 34 ›› Issue (3) : 246-269. DOI: 10.1016/j.eng.2023.12.008
Research
Review

Advanced Compressed Air Energy Storage Systems: Fundamentals and Applications

Author information +
History +

Abstract

Decarbonization of the electric power sector is essential for sustainable development. Low-carbon generation technologies, such as solar and wind energy, can replace the CO2-emitting energy sources (coal and natural gas plants). As a sustainable engineering practice, long-duration energy storage technologies must be employed to manage imbalances in the variable renewable energy supply and electricity demand. Compressed air energy storage (CAES) is an effective solution for balancing this mismatch and therefore is suitable for use in future electrical systems to achieve a high penetration of renewable energy generation. This study introduces recent progress in CAES, mainly advanced CAES, which is a clean energy technology that eliminates the use of fossil fuels, compared with two commercial CAES plants at Huntorf and McIntosh which are conventional ones utilizing fossil fuels. Advanced CAES include adiabatic CAES, isothermal CAES, liquid air energy storage, supercritical CAES, underwater CAES, and CAES coupled with other technologies. The principles and configurations of these advanced CAES technologies are briefly discussed and a comprehensive review of the state-of-the-art technologies is presented, including theoretical studies, experiments, demonstrations, and applications. The comparison and discussion of these CAES technologies are summarized with a focus on technical maturity, power sizing, storage capacity, operation pressure, round-trip efficiency, efficiency of the components, operation duration, and investment cost. Potential application trends were compiled. This paper presents a comprehensive reference for developing novel CAES systems and makes recommendations for future research and development to facilitate their application in several areas, ranging from fundamentals to applications.

Graphical abstract

Keywords

Compressed air energy storage / Fundamentals / Applications / Technological parameters / Comparison

Cite this article

Download citation ▾
Xinjing Zhang, Ziyu Gao, Bingqian Zhou, Huan Guo, Yujie Xu, Yulong Ding, Haisheng Chen. Advanced Compressed Air Energy Storage Systems: Fundamentals and Applications. Engineering, 2024, 34(3): 246‒269 https://doi.org/10.1016/j.eng.2023.12.008

References

[1]
UNFCCC. COP26 glasgow climate pact. Report. Glasgow: United Nations; 2021.
[2]
UNFCCC. COP27 climate summit agreement (draft). Report. Sharm el-Sheikh: United Nations; 2022.
[3]
Y. Xie, J. Liu, J. Tang, L. Huang, Z. Hou, J. Luo, et al. Large-scale underground storage of renewable energy coupled with power-to-X: challenges, trends, and potentials in China. Engineering, 29 (10) (2023), pp. 15-21.
[4]
Armstrong R, Chiang YM, Gruenspecht H, Brushett F, Deutch J, Engelkemier S, et al. The future of energy storage. Report. Cambridge: Massachusetts Institute of Technology; 2022.
[5]
F.F. Wu, P.P. Varaiya, R.S.Y. Hui. Smart grids with intelligent periphery: an architecture for the energy internet. Engineering, 1 (4) (2015), pp. 436-446.
[6]
N.A. Sepulveda, J.D. Jenkins, A. Edington, D.S. Mallapragada, R.K. Lester. The design space for long-duration energy storage in decarbonized power systems. Nat Energy, 6 (5) (2021), pp. 506-516.
[7]
O.J. Guerra. Beyond short-duration energy storage. Nat Energy, 6 (5) (2021), pp. 460-461.
[8]
K. Liu, Y. Ding. Large-scale energy storage for carbon neutrality. Engineering, 29 (10) (2023), p. 1.
[9]
S. Zhang, W. Chen. China’s energy transition pathway in a carbon neutral vision. Engineering, 14 (2022), pp. 64-76.
[10]
Viswanathan V, Mongrid K, Franks R, Li X, Sprenkle V. 2022 grid energy storage technology cost and performance assessment. Report. Washington, DC: US Department of Energy; 2022.
[11]
Z. Cao, Q. Xia, Y. He, Y. Xu, H. Chen, J. Deng. Discharging strategy of adiabatic compressed air energy storage system based on variable load and economic analysis. J Energy Storage, 51 (2022), p. 104403.
[12]
Energy storage grand challenge roadmap. Washington, DC: US Department of Energy; 2020.
[13]
E.R. Barbour, D.L.F. Pottie. Adiabatic compressed air energy storage systems. L.F. Cabeza (Ed.), Encyclopedia of energy storage, Elsevier, Oxford (2022), pp. 188-203.
[14]
J. Liu, Q. Wang, Z. Song, F. Fang. Bottlenecks and countermeasures of high-penetration renewable energy development in China. Engineering, 7 (11) (2021), pp. 1611-1622.
[15]
W.A. Braff, J.M. Mueller, J.E. Trancik. Value of storage technologies for wind and solar energy. Nat Clim Chang, 6 (10) (2016), pp. 964-969.
[16]
C. Yang, T. Wang, H. Chen. Theoretical and technological challenges of deep underground energy storage in China. Engineering, 25 (6) (2023), pp. 168-181.
[17]
H. Liu, C. Yang, J. Liu, Z. Hou, Y. Xie, X. Shi. An overview of underground energy storage in porous media and development in China. Gas Sci Eng, 117 (2023), p. 205079.
[18]
M. Budt, D. Wolf, R. Span, J. Yan. A review on compressed air energy storage: basic principles, past milestones and recent developments. Appl Energy, 170 (2016), pp. 250-268.
[19]
H. Jafarizadeh, M. Soltani, J. Nathwani. Assessment of the Huntorf compressed air energy storage plant performance under enhanced modifications. Energy Convers Manage, 209 (2020), p. 112662.
[20]
M. Soltani, K.F. Moradi, H. Jafarizadeh, M. Hatefi, H. Fekri, K. Gharali, et al. Diabatic compressed air energy storage (CAES) systems: state of the art. L.F. Cabeza (Ed.), Encyclopedia of energy storage, Elsevier, Oxford (2022), pp. 173-187.
[21]
E.R. Barbour, D.L. Pottie, P. Eames. Why is adiabatic compressed air energy storage yet to become a viable energy storage option?. Science, 24 (5) (2021), p. 102440.
[22]
H. Jafarizadeh, M. Soltani, J. Nathwani. A novel analysis of energy density considerations and its impacts on the cost of electrical energy storage (EES) plants. Energies, 16 (8) (2023), p. 3330.
[23]
Z. Tong, Z. Cheng, S. Tong. A review on the development of compressed air energy storage in China: technical and economic challenges to commercialization. Renew Sustain Energy Rev, 135 (2021), p. 110178.
[24]
Margaret M, Susan B, Vicky P. Energy storage grand challenge:energy storage market report. Report. Washington, DC: US Department of Energy; 2020.
[25]
Y. Li, S. Miao, X. Luo, B. Yin, J. Han, J. Wang. Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid. Appl Energy, 261 (2020), p. 114448.
[26]
H. Guo, Y. Xu, X. Zhang, Q. Liang, S. Wang, H. Chen. Dynamic characteristics and control of supercritical compressed air energy storage systems. Appl Energy, 283 (2021), p. 116294.
[27]
X. Zhang, H. Chen, Y. Xu, W. Li, F. He, H. Guo, et al. Distributed generation with energy storage systems: a case study. Appl Energy, 204 (2017), pp. 1251-1263.
[28]
E. Bazdar, M. Sameti, F. Nasiri, F. Haghighat. Compressed air energy storage in integrated energy systems: a review. Renew Sustain Energy Rev, 167 (2022), p. 112701.
[29]
A.M. Hamiche, A.B. Stambouli, S. Flazi, H. Koinuma. Compressed air storage: opportunities and sustainability issues. Energy Storage, 5 (7) (2023), p. e444.
[30]
E. Borri, A. Tafone, G. Comodi, A. Romagnoli, L.F. Cabeza. Compressed air energy storage—an overview of research trends and gaps through a bibliometric analysis. Energies, 15 (20) (2022), p. 7692.
[31]
C.R. Matos, P.P. Silva, J.F. Carneiro. Overview of compressed air energy storage projects and regulatory framework for energy storage. J Energy Storage, 55 (2022), p. 105862.
[32]
M. King, A. Jain, R. Bhakar, J. Mathur, J. Wang. Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK. Renew Sustain Energy Rev, 139 (2021), p. 110705.
[33]
H. Guo, Y. Xu, H. Kang, W. Guo, Y. Liu, X. Zhang, et al. From theory to practice: evaluating the thermodynamic design landscape of compressed air energy storage systems. Appl Energy, 352 (2023), p. 121858.
[34]
E.M. Gouda, Y. Fan, M. Benaouicha, T. Neu, L. Luo. Review on liquid piston technology for compressed air energy storage. J Energy Storage, 43 (2021), p. 103111.
[35]
A.G. Olabi, T. Wilberforce, M. Ramadan, M.A. Abdelkareem, A.H. Alami. Compressed air energy storage systems: components and operating parameters—a review. J Energy Storage, 34 (2021), p. 102000.
[36]
Q. Zhou, D. Du, C. Lu, Q. He, W. Liu. A review of thermal energy storage in compressed air energy storage system. Energy, 188 (2019), p. 115993.
[37]
H.M. Ali, T. Rehman, M. Arıcı, Z. Said, B. Duraković, H.I. Mohammed, et al. Advances in thermal energy storage: fundamentals and applications. Pror Energy Combust Sci, 100 (2024), p. 101109.
[38]
A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew Sustain Energy Rev, 14 (1) (2010), pp. 31-55.
[39]
X. Zhang, Y. Li, Z. Gao, S. Chen, Y. Xu, H. Chen. Overview of dynamic operation strategies for advanced compressed air energy storage. J Energy Storage, 66 (2023), p. 107408.
[40]
Technology assessment report for the soyland power cooperative, Inc. compressed air energy storage system (CAES). Report. Richland: Pacific Northwest National Library; 1982. Report No.: PNL-4077.
[41]
D. Smith. The first CAES merchant. Modern Power Syst, 21 (2001), pp. 21-25.
[42]
Cassel B. Ohio board revokes approval for 2700-MW compressed air project. Report. Transmission Hub; 2013.
[43]
Holst K, Huff G, Schulte RH, Critelli N. Lessons from Iowa:development of a 270 megawatt compressed air energy storage project in midwest independent system operator:a study for the DOE energy storage systems program. Report. Albuquerque: Sandia National Laboratories; 2012. Report No.: SAND2012-0388.
[44]
T. Shidahara, T. Oyama, K. Nakagawa, K. Kaneko, A. Nozaki. Geotechnical evaluation of a conglomerate for compressed air energy storage: the influence of the sedimentary cycle and filling minerals in the rock matrix. Eng Geol, 56 (1-2) (2000), pp. 125-135.
[45]
Medeiros M, Booth R, Fairchild J, Imperato D, Stinson C, Ausburn M, et al. Technical feasibility of compressed air energy storage (CAES) utilizing a porous rock reservoir. Report. San Francisco: Pacific Gas & Electric Company; 2018. Report No.: DOE-PGE-00198-1.
[46]
Bieber M, Marquardt R, Moser P. The ADELE project:development of an adiabatic CAES plant towards marketability. In: Proceedings of IRES 2010—International Renewable Energy Storage Conference; Bonn, Germany. 2010.
[47]
Zunft S, Dreißigacker V, Bieber M, Banach A, Klabunde C, Warweg O. Electricity storage with adiabatic compressed air energy storage: results of the BMWi-project ADELE-ING. In: Proceedings of International ETG Congress 2017; 2017 Nov 28-29; Bonn, Germany. IEEE; 2017. p. 1-5.
[48]
Arthur M. A Look at the status of five energy storage technologies. Report. Washington, DC: Environmental and Energy Study Institute; 2020.
[49]
Office of scientific and technical information technical report. Report. New York City: New York State Electric and Gas; 2012.
[50]
US Department of Energy. Advanced compressed air energy storage. Report. New York City: New York State Electric and Gas; 2016.
[51]
Bollinger B. Demonstration of isothermal compressed air energy storage to support renewable energy production. Report. West Lebanon: SustainX Inc.; 2015.
[52]
Liang T, Zhang T, Li Y, Tong L, Wang L, Ding Y. Thermodynamic analysis of liquid air energy storage (LAES) system. Encyclopedia of energy storage. Oxford: Elsevier; 2022.
[53]
S. Wang, X. Zhang, L. Yang, Y. Zhou, J. Wang. Experimental study of compressed air energy storage system with thermal energy storage. Energy, 103 (2016), pp. 182-191.
[54]
S. Hiroki, T. Sato, M. Toshima, Y. Kubo. Compressed air energy storage system. Kobelco Technol Rev, 39 (2021), p. 6.
[55]
Goderich energy storage facility [Internet]. Toronto: HYDROSTOR; [cited 2023 Apr 15]. Available from: https://hydrostor.ca/projects/the-goderich-a-caes-facility/
[56]
Crampsie S. Larne CAES plans withdrawn. Report. London: Modern Power Systems; 2019.
[57]
Chen H, Tan C, Liu J, Xu Y. inventors; Institute of Engineering Thermophysics, Chinese Academy of Sciences, assignee. Energy storage system using supercritical air. United States patent US 9217423B2. 2015 Dec 22.
[58]
P. Roos, A. Haselbacher. Analytical modeling of advanced adiabatic compressed air energy storage: literature review and new models. Renew Sustain Energy Rev, 163 (2022), p. 112464.
[59]
Kreid DK. Technical and economic feasibility analysis of the no-fuel compressed air energy storage concept. Report. Oak Ridge: US Department of Energy; 1976. Report No.: BNWL-2065.
[60]
C. Guo, Y. Xu, H. Guo, X. Zhang, X. Lin, L. Wang, et al. Comprehensive exergy analysis of the dynamic process of compressed air energy storage system with low-temperature thermal energy storage. Appl Therm Eng, 147 (2019), pp. 684-693.
[61]
H. Guo, Y. Xu, X. Zhang, Y. Zhu, H. Chen. Finite-time thermodynamics modeling and analysis on compressed air energy storage systems with thermal storage. Renew Sustain Energy Rev, 138 (2021), p. 110656.
[62]
B. Thomas, L. Doerte, T. Rainer. Thermal energy storage materials and systems. Annu Rev Heat Transf, 15 (2012), p. 47.
[63]
W. Ding, T. Bauer. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering, 7 (3) (2021), pp. 334-347.
[64]
W. Zhang, X. Xue, F. Liu, S. Mei. Modelling and experimental validation of advanced adiabatic compressed air energy storage with off-design heat exchanger. IET Renew Power Gener, 14 (3) (2020), pp. 389-398.
[65]
R.K. Shah, S.DP. Analysis. HEPD. Fundamentals of heat exchanger design. John Wiley & Sons, New York City (2003).
[66]
Q. Liang, Z. Zuo, X. Zhou, H. Tang, H. Chen. Design of a centrifugal compressor with low solidity vaned diffuser (LSVD) for large-scale compressed air energy storage (CAES). J Therm Sci, 29 (2) (2020), pp. 423-434.
[67]
C. Meng, Z. Zuo, W. Guo, Q. Liang, J. Sun, H. Chen. Research on regulation law of inlet guide vane in high-pressure centrifugal compressor of CAES. J Eng Thermophys, 42 (2021), pp. 2834-2840.
[68]
C. Meng, Z. Zuo, J. Sun, W. Guo, Q. Liang, H. Chen. Internal inflow study on a high-pressure centrifugal compressor with shroud and backside cavity in a compressed air energy storage system. J Power Energy, 236 (7) (2022), pp. 1418-1432.
[69]
C. Meng, Z. Zuo, J. Sun, Q. Liang, W. Guo, H. Chen. Numerical study on the influence of shroud cavity in the high-pressure centrifugal compressor for compressed air energy storage system. IOP Conf Ser Earth Environ Sci, 804 (3) (2021), p. 032018.
[70]
L. Geissbühler, V. Becattini, G. Zanganeh, S. Zavattoni, M. Barbato, A. Haselbacher, et al. Pilot-scale demonstration of advanced adiabatic compressed air energy storage, part 1: plant description and tests with sensible thermal-energy storage. J Energy Storage, 17 (2018), pp. 129-139.
[71]
V. Becattini, L. Geissbühler, G. Zanganeh, A. Haselbacher, A. Steinfeld. Pilot-scale demonstration of advanced adiabatic compressed air energy storage, part 2: tests with combined sensible/latent thermal-energy storage. J Energy Storage, 17 (2018), pp. 140-152.
[72]
Bullough C, Gatzen C, Jakiel C, Koller M, Nowi A, Zunft S. Advanced adiabatic compressed air energy storage for the integration of wind energy. In: Proceedings of European Wind Energy Conference; 2004 Nov 22-25; London UK. DLR; 2004. p. 8.
[73]
“Game-changing” long-duration energy storage projects to store power in hydrogen, compressed air and next-gen batteries win UK government backing. Report. London: EDF Renewables; 2022.
[74]
C. Qin, E. Loth. Liquid piston compression efficiency with droplet heat transfer. Appl Energy, 114 (2014), pp. 539-550.
[75]
Li PY. Isothermal compressed air energy storage (i-CAES) system. Encyclopedia of energy storage. Oxford: Elsevier; 2022. p. 204-17.
[76]
W. He, J. Wang. Optimal selection of air expansion machine in compressed air energy storage: a review. Renew Sustain Energy Rev, 87 (2018), pp. 77-95.
[77]
A. Odukomaiya, E. Kokou, Z. Hussein, A. Abu-Heiba, S. Graham, A.M. Momen. Near-isothermal-isobaric compressed gas energy storage. J Energy Storage, 12 (2017), pp. 276-287.
[78]
O.N. Igobo, P.A. Davies. Review of low-temperature vapour power cycle engines with quasi-isothermal expansion. Energy, 70 (2014), pp. 22-34.
[79]
J.A. Bennett, J.G. Simpson, C. Qin, R. Fittro, G.M. Koenig Jr, A.F. Clarens, et al. Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power. Appl Energy, 303 (2021), p. 117587.
[80]
H. Chen, Y. Peng, Y. Wang, J. Zhang. Thermodynamic analysis of an open type isothermal compressed air energy storage system based on hydraulic pump/turbine and spray cooling. Energy Convers Manage, 204 (2020), p. 112293.
[81]
A. Odukomaiya, A. Abu-Heiba, K.R. Gluesenkamp, O. Abdelaziz, R.K. Jackson, C. Daniel, et al. Thermal analysis of near-isothermal compressed gas energy storage system. Appl Energy, 179 (2016), pp. 948-960.
[82]
A. Odukomaiya, A. Abu-Heiba, S. Graham, A.M. Momen. Experimental and analytical evaluation of a hydro-pneumatic compressed-air ground-level integrated diverse energy storage (GLIDES) system. Appl Energy, 221 (2018), pp. 75-85.
[83]
S. Kassaee, A. Abu-Heiba, M.R. Ally, M.M. Mench, X. Liu, A. Odukomaiya, et al. Part 1—techno-economic analysis of a grid scale ground-level integrated diverse energy storage (GLIDES) technology. J Energy Storage, 25 (2019), p. 10.
[84]
M. Li. Experimental research of internal water-spray cooling in reciprocating compressor. Fluid Eng, 21 (1993), p. 5.
[85]
X. Zhang, Y. Xu, X. Zhou, Y. Zhang, W. Li, Z. Zuo, et al. A near-isothermal expander for isothermal compressed air energy storage system. Appl Energy, 225 (2018), pp. 955-964.
[86]
T. Neu, C. Solliec, P.B. dos Santos. Experimental study of convective heat transfer during liquid piston compressions applied to near isothermal underwater compressed-air energy storage. J Energy Storage, 32 (2020), p. 101827.
[87]
O. Maisonnave, L. Moreau, R. Aubrée, M.F. Benkhoris, T. Neu, D. Guyomarc’h. Optimal energy management of an underwater compressed air energy storage station using pumping systems. Energy Convers Manage, 165 (2018), pp. 771-782.
[88]
T. Neu, A. Subrenat. Experimental investigation of internal air flow during slow piston compression into isothermal compressed air energy storage. J Energy Storage, 38 (2021), p. 102532.
[89]
E.M. Gouda, M. Benaouicha, T. Neu, Y. Fan, L. Luo. Flow and heat transfer characteristics of air compression in a liquid piston for compressed air energy storage. Energy, 254 (2022), p. 124305.
[90]
E.M. Gouda, T. Neu, M. Benaouicha, Y. Fan, A. Subrenat, L. Luo. Experimental and numerical investigation on the flow and heat transfer behaviors during a compression-cooling-expansion cycle using a liquid piston for compressed air energy storage. Energy, 277 (2023), p. 127622.
[91]
B. Yan, J. Wieberdink, F. Shirazi, P.Y. Li, T.W. Simon. J.D. Van de Ven. Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts. Appl Energy, 154 (2015), pp. 40-50.
[92]
Zhang C, Shirazi FA, Yan B, Simon TW, Li PY, Van de Ven J. Design of an interrupted-plate heat exchanger used in a liquid-piston compression chamber for compressed air energy storage. In:Proceedings of ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology; 2013 Jul 14-19; Minneapolis, MN, USA. ASME; 2013. p. 17484.
[93]
C. Zhang, B. Yan, J. Wieberdink, P.Y. Li, J.D. Van de Ven, E. Loth, et al. Thermal analysis of a compressor for application to compressed air energy storage. Appl Therm Eng, 73 (2) (2014), pp. 1402-1411.
[94]
V.C. Patil, J. Liu, P.I. Ro. Efficiency improvement of liquid piston compressor using metal wire mesh for near-isothermal compressed air energy storage application. J Energy Storage, 28 (2020), p. 101226.
[95]
Y. Ding, Y. Li, L. Tong, L. Wang. Liquid air energy storage. T.M. Letcher (Ed.), Storing energy (2nd ed.), Elsevier, Amsterdam (2022).
[96]
A. Vecchi, J. Naughton, Y. Li, P. Mancarella, A. Sciacovelli. Multi-mode operation of a liquid air energy storage (LAES) plant providing energy arbitrage and reserve services—analysis of optimal scheduling and sizing through MILP modelling with integrated thermodynamic performance. Energy, 200 (2020), p. 117500.
[97]
X. She, T. Zhang, Y. Meng, T. Liang, X. Peng, L. Tong, et al. Cryogenic energy storage. Encyclopedia of energy storage, Elsevier, Oxford (2022), pp. 94-107.
[98]
T. Liang, T. Zhang, X. Lin, T. Alessio, M. Legrand, X. He, et al. Liquid air energy storage technology: a comprehensive review of research, development and deployment. Prog Energy, 5 (1) (2023), p. 012002.
[99]
Y. Lim, M. Al-Atabi, R.A. Williams. Liquid air as an energy storage: a review. J Eng Sci Technol, 11 (2016), pp. 496-515.
[100]
R. Morgan, S. Nelmes, E. Gibson, G. Brett. Liquid air energy storage—analysis and first results from a pilot scale demonstration plant. Appl Energy, 137 (2015), pp. 845-853.
[101]
A. Dzido, P. Krawczyk, M. Wołowicz, K. Badyda. Comparison of advanced air liquefaction systems in liquid air energy storage applications. Renew Energy, 184 (2022), pp. 727-739.
[102]
O. O’Callaghan, P. Donnellan. Liquid air energy storage systems: a review. Renew Sustain Energy Rev, 146 (2021), p. 111113.
[103]
E. Borri, A. Tafone, A. Romagnoli, G. Comodi. A review on liquid air energy storage: history, state of the art and recent developments. Renew Sustain Energy Rev, 137 (2021), p. 110572.
[104]
G.L. Guizzi, M. Manno, L.M. Tolomei, R.M. Vitali. Thermodynamic analysis of a liquid air energy storage system. Energy, 93 (2015), pp. 1639-1647.
[105]
Liu J. Numerical and experimental study on heat and cold energy storage using supercritical air [dissertation]. Beijing: University of Chinese Academy of Sciences; 2012. Chinese.
[106]
E.M. Smith. Storage of electrical energy using supercritical liquid air. Proc Inst Mech Eng, 191 (1) (1977), pp. 289-298.
[107]
K. Chino, H. Araki. Evaluation of energy storage method using liquid air. Heat Transf Asian Res, 29 (5) (2000), pp. 347-357.
[108]
L. Chai, J. Liu, L. Wang, L. Yue, L. Yang, Y. Sheng, et al. Cryogenic energy storage characteristics of a packed bed at different pressures. Appl Therm Eng, 63 (1) (2014), pp. 439-446.
[109]
Y. Li, H. Cao, S. Wang, Y. Jin, D. Li, X. Wang, et al. Load shifting of nuclear power plants using cryogenic energy storage technology. Appl Energy, 113 (2014), pp. 1710-1716.
[110]
T. Zhang, X. She, Z. You, Y. Zhao, H. Fan, Y. Ding. Cryogenic thermoelectric generation using cold energy from a decoupled liquid air energy storage system for decentralised energy networks. Appl Energy, 305 (2022), p. 117749.
[111]
Sciacovelli A, Smith D, Navarro H, Li Y, Ding Y. Liquid air energy storage—operation and performance of the first pilot plant in the world. In: Proceedings of The 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems; 2016 Jun 19-23; Portorož Slovenia; 2016.
[112]
H. Guo, Y. Xu, H. Chen, X. Zhou. Thermodynamic characteristics of a novel supercritical compressed air energy storage system. Energy Convers Manage, 115 (2016), pp. 167-177.
[113]
H. Guo, Y. Xu, H. Chen, C. Guo, W. Qin. Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system. Appl Energy, 199 (2017), pp. 96-106.
[114]
L. Chai, L. Wang, J. Liu, L. Yang, H. Chen, C. Tan. Performance study of a packed bed in a closed loop thermal energy storage system. Energy, 77 (2014), pp. 871-879.
[115]
H. Li, W. Li, X. Zhang, Y. Zhu, Z. Zuo, H. Chen, et al. Performance and flow characteristics of the liquid turbine for supercritical compressed air energy storage system. Appl Therm Eng, 211 (2022), p. 118491.
[116]
H. Li, Z. Shao, X. Zhang, Y. Zhu, W. Li, H. Chen, et al. Preliminary design and performance analysis of the liquid turbine for supercritical compressed air energy storage systems. Appl Therm Eng, 203 (2022), p. 117891.
[117]
J. Niu, C. Zhang, Y. Li, Y. Wu, H. Sun. Design and investigation of cold storage material for large-scale application in supercritical compressed air energy storage system. J Energy Storage, 75 (2024), p. 109680.
[118]
Z. Wang, R. Carriveau, D.S.K. Ting, W. Xiong, Z. Wang. A review of marine renewable energy storage. Int J Energy Res, 43 (12) (2019), pp. 6108-6150.
[119]
J. Moradi, H. Shahinzadeh, A. Khandan, M. Moazzami. A profitability investigation into the collaborative operation of wind and underwater compressed air energy storage units in the spot market. Energy, 141 (2017), pp. 1779-1794.
[120]
P. Zhao, F. Gou, W. Xu, J. Wang, Y. Dai. Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes. Renew Energy, 181 (2022), pp. 71-90.
[121]
H. Guo, Y. Xu, Y. Zhu, X. Zhang, Z. Yin, H. Chen. Coupling properties of thermodynamics and economics of underwater compressed air energy storage systems with flexible heat exchanger model. J Energy Storage, 43 (2021), p. 103198.
[122]
Z. Wang, W. Xiong, D.S.K. Ting, R. Carriveau, Z. Wang. Conventional and advanced exergy analyses of an underwater compressed air energy storage system. Appl Energy, 180 (2016), pp. 810-822.
[123]
A. Pimm, S.D. Garvey. Underwater compressed air energy storage. T.M. Letcher (Ed.), Storing energy (2nd ed.), Elsevier, Amsterdam (2022).
[124]
Dick C, Ernst B, Puchta M, Bard J. Deep-sea pumped hydro storage. Encyclopedia of energy storage. Oxford: Elsevier; 2022.
[125]
D. Guo, Z. Yin, X. Zhou, Y. Xu, Y. Sheng, W. Suo, et al. Status and prospect of gas storage device in compressed air energy storage system. Energy Storage Sci Technol, 10 (2021), pp. 1486-1493.Chinese.
[126]
A.J. Pimm, S.D. Garvey, M. de Jong. Design and testing of energy bags for underwater compressed air energy storage. Energy, 66 (2014), pp. 496-508.
[127]
Y. He, S. Guo, J. Zhou, J. Ye, J. Huang, K. Zheng, et al. Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages. Renew Energy, 184 (2022), pp. 776-790.
[128]
X. Lin, R. Zamora. Controls of hybrid energy storage systems in microgrids: critical review, case study and future trends. J Energy Storage, 47 (2022), p. 103884.
[129]
Z. Tang, J. Liu, P. Zeng. A multi-timescale operation model for hybrid energy storage system in electricity markets. Int J Electr Power Energy Syst, 138 (2022), p. 107907.
[130]
Nakhamkin M, Wolk RH. Linden Svd, Patel M. New compressed air energy storage concept improves the profitability of existing simple cycle, combined cycle, wind energy, and landfill gas power plants. In: Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air; 2004 Jun 14-17; Vienna, Austria. ASME. 2004 103-10.
[131]
F. He, Y. Xu, X. Zhang, C. Liu, H. Chen. Hybrid CCHP system combined with compressed air energy storage. Int J Energy Res, 39 (13) (2015), pp. 1807-1818.
[132]
X. Wang, H. Guo, H. Zhang, Y. Xu, Y. Liu, H. Chen. Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants. Energy Storage Sci Technol, 10 (2021), pp. 598-610.Chinese.
[133]
L. Zhang, J. Cui, Y. Zhang, T. Yang, J. Li, W. Gao. Performance analysis of a compressed air energy storage system integrated into a coal-fired power plant. Energy Convers Manage, 225 (2020), p. 113446.
[134]
Li J, Yan P, Zhou G, Li X, Li Q, Liu J, et al. Characteristics analysis of integrated CAES and CFPP trigeneration system considering working conditions and application scenarios. Engineering, 2024;34:233-45.
[135]
X. Wang, C. Yang, M. Huang, X. Ma. Off-design performances of gas turbine-based CCHP combined with solar and compressed air energy storage with organic Rankine cycle. Energy Convers Manage, 156 (2018), pp. 626-638.
[136]
Lerch E. Storage of fluctuating wind energy. In:Proceedings of 2007 European Conference on Power Electronics and Applications; 2007 Sep 2-5; Aalborg, Denmark. IEEE; 2007. p. 1-8.
[137]
van der Linden S.. Integrating wind turbine generators (WTG’s) with GT-CAES (compressed air energy storage) stabilizes power delivery with the inherent benefits of bulk energy storage. In:Proceedings of ASME 2007 International Mechanical Engineering Congress and Exposition; 2007 Nov 11-15; Seattle, WA, USA. ASME; 2007. p. 379-86.
[138]
Z. Han, P. An, S. Guo, K. Jiang. Thermodynamic performance analysis of advanced adiabatic compressed air energy storage system based on solar auxiliary heating. Acta Energ Solar Sinica, 41 (2020), pp. 243-250.Chinese.
[139]
Y. Zhang, Y. Xu, X. Zhou, H. Guo, X. Zhang, H. Chen. Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation. Appl Energy, 239 (2019), pp. 957-968.
[140]
C. Diyoke, C. Wu. Thermodynamic analysis of hybrid adiabatic compressed air energy storage system and biomass gasification storage (A-CAES + BMGS) power system. Fuel, 271 (2020), p. 117572.
[141]
A.R. Razmi, H. Heydari Afshar, A. Pourahmadiyan, M. Torabi. Investigation of a combined heat and power (CHP) system based on biomass and compressed air energy storage (CAES). Sustain Energy Technol Assess, 46 (2021), p. 101253.
[142]
B. Llamas, M.F. Ortega, G. Barthelemy, I. de Godos, F.G. Acién. Development of an efficient and sustainable energy storage system by hybridization of compressed air and biogas technologies (BIO-CAES). Energy Convers Manage, 210 (2020), p. 112695.
[143]
S.M. Alirahmi, A.R. Razmi, A. Arabkoohsar. Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems. Renew Sustain Energy Rev, 142 (2021), p. 110850.
[144]
Ł. Bartela. A hybrid energy storage system using compressed air and hydrogen as the energy carrier. Energy, 196 (2020), p. 117088.
[145]
Y. Li, Y. Liu, B. Hu, Y. Li, J. Dong. Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy. Appl Energy, 279 (2020), p. 115781.
[146]
Y. Zhang, Y. Xu, H. Guo, X. Zhang, C. Guo, H. Chen. A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations. Renew Energy, 125 (2018), pp. 121-132.
[147]
P. Zhao, M. Wang, J. Wang, Y. Dai. A preliminary dynamic behaviors analysis of a hybrid energy storage system based on adiabatic compressed air energy storage and flywheel energy storage system for wind power application. Energy, 84 (2015), pp. 825-839.
[148]
A. Berrada, K. Loudiyi, I. Zorkani. Toward an improvement of gravity energy storage using compressed air. Energy Proced, 134 (2017), pp. 855-864.
[149]
H. Chen, H. Wang, R. Li, H. Sun, G. Ge, L. Ling. Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system. Energy, 249 (2022), p. 123607.
[150]
Jin H, Liu P, Li Z. Dynamic modelling of a hybrid diabatic compressed air energy storage and wind turbine system. In: Espuña A, Graells M, Puigjaner L, editors. Computer aided chemical engineering. Elsevier; 2017. p. 2569-74.
[151]
A. Mohammadi, M. Mehrpooya. Exergy analysis and optimization of an integrated micro gas turbine, compressed air energy storage and solar dish collector process. J Clean Prod, 139 (2016), pp. 372-383.
[152]
M. Heidari, D. Parra, M.K. Patel. Physical design, techno-economic analysis and optimization of distributed compressed air energy storage for renewable energy integration. J Energy Storage, 35 (2021), p. 102268.
[153]
Q. Zhou, Q. He, C. Lu, D. Du. Techno-economic analysis of advanced adiabatic compressed air energy storage system based on life cycle cost. J Clean Prod, 265 (2020), p. 121768.
[154]
P.K. Cheekatamarla, S. Kassaee, A. Abu-Heiba, A.M. Momen. Near isothermal compressed air energy storage system in residential and commercial buildings: techno-economic analysis. Energy, 251 (2022), p. 123963.
[155]
P. Krawczyk, Ł. Szabłowski, S. Karellas, E. Kakaras, K. Badyda. Comparative thermodynamic analysis of compressed air and liquid air energy storage systems. Energy, 142 (2018), pp. 46-54.
[156]
S. Wu, C. Zhou, E. Doroodchi, B. Moghtaderi. Techno-ecomic analysis of an integrated liquid air and thermochemical energy storage system. Energy Convers Manage, 205 (2020), p. 112341.
[157]
E.N. Nyeche, E.O. Diemuodeke. Modelling and optimisation of a hybrid PV-wind turbine-pumped hydro storage energy system for mini-grid application in coastline communities. J Clean Prod, 250 (2020), p. 119578.
[158]
K.M. Khalil, A. Ahmad, S. Mahmoud, R.K. Al-Dadah. Liquid air/nitrogen energy storage and power generation system for micro-grid applications. J Clean Prod, 164 (2017), pp. 606-617.
[159]
Z. Wang, D.S.K. Ting, R. Carriveau, W. Xiong, Z. Wang. Design and thermodynamic analysis of a multi-level underwater compressed air energy storage system. J Energy Storage, 5 (2016), pp. 203-211.
[160]
M. Marefati, M. Mehrpooya, F. Pourfayaz. Performance analysis of an integrated pumped-hydro and compressed-air energy storage system and solar organic Rankine cycle. J Energy Storage, 44 (2021), p. 103488.
[161]
M. Xu, P. Zhao, Y. Huo, J. Han, J. Wang, Y. Dai. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system. J Clean Prod, 242 (2020), p. 118437.
[162]
D. Wolf, M. Budt. LTA-CAES—a low-temperature approach to adiabatic compressed air energy storage. Appl Energy, 125 (2014), pp. 158-164.
[163]
Y.M. Kim, D. Favrat. Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system. Energy, 35 (1) (2010), pp. 213-220.
[164]
E. Jannelli, M. Minutillo, L.A. Lavadera, G. Falcucci. A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: a sizing-design methodology. Energy, 78 (2014), pp. 313-322.
[165]
Z. Liao, H. Zhong, C. Xu, X. Ju, F. Ye, X. Du. Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems. Appl Energy, 269 (2020), p. 115132.
[166]
B. Zakeri, S. Syri. Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev, 42 (2015), pp. 569-596.
[167]
J.A. Bennett, J.P. Fitts, A.F. Clarens. Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling. Appl Energy, 325 (2022), p. 119830.
[168]
H. Chen, C. Liu, Y. Xu, F. Yue, W. Liu, Z. Yu. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality. Energy Storage Sci Technol, 10 (55) (2021), pp. 1477-1485.Chinese.
[169]
White paper of energy storage industry 2022. Report. Beijing: China Energy Storage Alliance; 2022. Chinese.
AI Summary AI Mindmap
PDF(7161 KB)

Accesses

Citations

Detail

Sections
Recommended

/