Generation and Suppression of Pendant Droplet Oscillation in Electron Beam Directed Energy Deposition

Zhiyue Liang, Zhenyu Liao, Haoyu Zhang, Zixiang Li, Li Wang, Baohua Chang, Dong Du

Engineering ›› 2024, Vol. 37 ›› Issue (6) : 231-246.

PDF(4992 KB)
PDF(4992 KB)
Engineering ›› 2024, Vol. 37 ›› Issue (6) : 231-246. DOI: 10.1016/j.eng.2023.12.012
Research
Article

Generation and Suppression of Pendant Droplet Oscillation in Electron Beam Directed Energy Deposition

Author information +
History +

Abstract

Electron beam-directed energy deposition (EB-DED) has emerged as a promising wire-based metal additive manufacturing technique. However, the effects of EBs on pendant droplets at wire tips have not yet been determined. The aim of this study is to enhance the understanding of this action by analyzing the mechanism of droplet oscillation. The pendant droplet oscillation phenomenon hinders the stable transfer of droplets to the molten pool and limits the feasibility of manufacturing complex lattice structures by EB-DED. Hence, another aim of this study is to create an oscillation suppression method. An escalating asymmetric amplitude is the main characteristic of droplet oscillation. The primary oscillation-inducing force is the recoil force generated from the EB-acted local surface of the droplet. The physical mechanism of this force is the rapid increase and uneven distribution of the local surface temperature caused by the partial action of the EB. The prerequisites for droplet oscillation include vacuum conditions, high power densities, and bypass wire feeding processes. The proposed EB-dynamic surrounding melting (DSM) method can be applied to conveniently and effectively suppress oscillations, enable the accurate transfer of droplets to the molten pool, and achieve stable processes for preparing the strut elements of lattice structures. Lowering the temperature and improving the uniformity of its distribution are the mechanisms of oscillation suppression in EB-DSM. In this study, the physical basis for interpreting the mechanism by which EBs act on droplets and the technical basis for using EB-DED to prepare complex lattice structure parts are provided.

Graphical abstract

Keywords

Additive manufacturing / Electron beam freeform fabrication / In situ monitoring / Pendant droplet

Cite this article

Download citation ▾
Zhiyue Liang, Zhenyu Liao, Haoyu Zhang, Zixiang Li, Li Wang, Baohua Chang, Dong Du. Generation and Suppression of Pendant Droplet Oscillation in Electron Beam Directed Energy Deposition. Engineering, 2024, 37(6): 231‒246 https://doi.org/10.1016/j.eng.2023.12.012

References

[1]
D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu. Material-structure-performance integrated laser-metal additive manufacturing. Science, 372 (6545) (2021), p. eabg1487.
[2]
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock. 3D printing of high-strength aluminium alloys. Nature, 549 (7672) (2017), pp. 365-369.
[3]
Gisario, M. Kazarian, F. Martina, M. Mehrpouya. Metal additive manufacturing in the commercial aviation industry: a review. J Manuf Syst, 53 (2019), pp. 124-149.
[4]
S. Kurpjuweit, C.G. Schmidt, M. Klöckner, S.M. Wagner. Blockchain in additive manufacturing and its impact on supply chains. J Bus Logist, 42 (1) (2021), pp. 46-70.
[5]
J. Zhang, Y. Liu, G. Sha, S. Jin, Z. Hou, M. Bayat, et al. Designing against phase and property heterogeneities in additively manufactured titanium alloys. Nat Commun, 13 (1) (2022), p. 4660.
[6]
C. Zhao, B. Shi, S. Chen, D. Du, T. Sun, B.J. Simonds, et al. Laser melting modes in metal powder bed fusion additive manufacturing. Rev Mod Phys, 94 (4) (2022), Article 045002.
[7]
M. Parsazadeh, S. Sharma, N. Dahotre. Towards the next generation of machine learning models in additive manufacturing: a review of process dependent material evolution. Prog Mater Sci, 135 (2023), Article 101102.
[8]
J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy. Mater Des, 110 (2016), pp. 558-570.
[9]
C. Zhao, N.D. Parab, X. Li, K. Fezzaa, W. Tan, A.D. Rollett, et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science, 370 (6520) (2020), pp. 1080-1086.
[10]
R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science, 363 (6429) (2019), pp. 849-852.
[11]
L. Wang, Y. Zhang, H.Y. Chia, W. Yan. Mechanism of keyhole pore formation in metal additive manufacturing. npj Comput Mater, 8 (2022), p. 22.
[12]
G. Chen, X. Shu, J. Liu, B. Zhang, J. Feng. A new coating method with potential for additive manufacturing: premelting electron beam-assisted freeform fabrication. Addit Manuf, 33 (2020), Article 101118.
[13]
Q. Tang, S. Pang, B. Chen, H. Suo, J. Zhou. A three dimensional transient model for heat transfer and fluid flow of weld pool during electron beam freeform fabrication of Ti-6-Al-4-V alloy. Int J Heat Mass Transf, 78 (2014), pp. 203-215.
[14]
J. Huang, Z. Li, S. Yu, X. Yu, D. Fan. Real- time observation and numerical simulation of the molten pool flow and mass transfer behavior during wire arc additive manufacturing. Weld World, 66 (3) (2022), pp. 481-494.
[15]
Z. Li, Y. Cui, B. Chang, G. Liu, Z. Pu, H. Zhang, et al. Manipulating molten pool in in-situ additive manufacturing of Ti-22Al-25 Nb through alternating dual-electron beams. Addit Manuf, 60 (2022), Article 103230.
[16]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang. Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion. Int J Heat Mass Transf, 126 (2018), pp. 877-887.
[17]
S. Chang, H. Zhang, H. Xu, X. Sang, L. Wang, D. Du, et al. Closed-loop control of droplet transfer in electron-beam freeform fabrication. Sensors, 20 (3) (2020), p. 923.
[18]
J. Yang, S. Xu, C. Jia, Y. Han, S. Maksymov, C. Wu. A novel 3D numerical model coupling droplet transfer and arc behaviors for underwater FCAW. Int J Therm Sci, 184 (2023), Article 107906.
[19]
Taminger KMB. EBF 3 Design and Sustainability Considerations. In:Proceedings of the Annual Meeting and Exhibition of The Minerals, Metals and Materials Society (TMS); 2015 Mar 15-19; Orlando, FL, USA. Washington: NASA Technical Reports Server; 2016. p. 20160006878.
[20]
Davé VR. Electron beam (EB)-assisted materials fabrication [dissertation]. Cambridge: Massachusetts Institute of Technology; 1995.
[21]
Hafley R, Taminger K, Bird R. Electron beam freeform fabrication in the space environment. Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit; USA.2007 Jan 08-11; Reno, NV, Reston: American Institute of Aeronautics and Astronautics; 2007. p. 1154.
[22]
Seufzer WJ, Taminger K. Control methods for the electron beam free form fabrication process. In: Proceedings for the 2007 International Solid Freeform Fabrication Symposium; 2007 Aug 6-8; Austin, TX, USA. Austin:The University of Texas at Austin; 2007. p. 13-21.
[23]
Sciaky, Inc. Sciaky’s electron beam additive manufacturing (EBAM®) surpasses 40 lbs. of titanium/hour, making it the highest deposition rate in the world for industrial metal 3D printing. Report. Chicago: Sciaky, Inc.; 2022.
[24]
Z. Pu, D. Du, D. Zhang, R. Xi, X. Wang, B. Chang. Study on the role of carbon in modifying second phase and improving tensile properties of NiTi shape memory alloys fabricated by electron beam directed energy deposition. Addit Manuf, 75 (2023), Article 103733.
[25]
K.N. Kalashnikov, V.E. Rubtsov, N.L. Savchenko, T.A. Kalashnikova, K.S. Osipovich, A.A. Eliseev, et al. The effect of wire feed geometry on electron beam freeform 3D printing of complex-shaped samples from Ti-6Al-4V alloy. Int J Adv Manuf Technol, 105 (2019), pp. 3147-3156.
[26]
J. Xu, Q. Zhou, J. Kong, Y. Peng, S. Guo, J. Zhu, et al. Solidification behavior and microstructure of Ti-(37-52) at% Al alloys synthesized in situ via dual-wire electron beam freeform fabrication. Addit Manuf, 46 (2021), Article 102113.
[27]
X. Lai, G. Yang, Y. Wang, Z. Wei. Heat and mass transfer in electron beam additive manufacturing. Int J Mech Sci, 259 (2023), Article 108613.
[28]
Liao Z, Liang Z, Zhang H, Li Z, Wang L, Du D. Vision-based real-time molten pool monitoring for electron beam freeform fabrication. Proceedings of the 2023 IEEE International Conference on Real-time Computing and Robotics RCAR; 2023 Jul 17-20; Datong, China. Piscataway: IEEE; 2023. p. 328-33.
[29]
Z. Liang, Z. Liao, H. Zhang, Z. Li, L. Wang, B. Chang, et al. Improving process stability of electron beam directed energy deposition by closed-loop control of molten pool. Addit Manuf, 72 (2023), Article 103638.
[30]
K.M. Taminger, C.S. Domack, J.N. Zalameda, B.L. Taminger, R.A. Hafley, E.R. Burke, et al. In-process thermal imaging of the electron beam freeform fabrication process. J.N.Zalameda, P.Bison (Eds.), Thermosense: Thermal Infrared Applications XXXVIII; 2016 Apr 17-21; Baltimore, MD, USA, SPIE Digital Library, Baltimore (2016), p. 986102.
[31]
J. Guo, A. Huang, R. Hu, H. Xu, G. Yang, S. Pang. An in-situ monitoring system for electron beam wire-feed additive manufacturing. Sens Actuators A, 307 (2020), Article 111983.
[32]
Z. Ou, Z. Han, C. Yang, S. Dong, D. Du. Surface and back-side defects identification combined with magnetic flux leakage and boundary magnetic perturbation. Rev Sci Instrum, 93 (6) (2022), Article 065006.
[33]
Z. Liang, B. Chang, H. Zhang, Z. Li, G. Peng, D. Du, et al. Electric current evaluation for process monitoring in electron beam directed energy deposition. Int J Mach Tools Manuf, 176 (2022), Article 103883.
[34]
Sciaky. Sciaky's electron beam additive manufacturing (EBAM®) technology helps submarine manufacturer save significant time and cost by 3D printing a titanium variable ballast (VB) tank. Report. Sciaky, Inc., Chicago (2017).
[35]
Todorov E, Spencer R, Gleeson S, Jamshidinia M, Kelly SM, America makes: national additive manufacturing innovation institute (NAMII) project 1:nondestructive evaluation (NDE) of complex metallic additive manufactured (AM) structures. Report. Ohio: Air force research laboratory; 2014.
[36]
L. Chen, S. Liang, Y. Liu, L. Zhang. Additive manufacturing of metallic lattice structures: unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater Sci Eng R Rep, 146 (2021), Article 100648.
[37]
C. Tan, J. Zou, S. Li, P. Jamshidi, A. Abena, A. Forsey, et al. Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures. Int J Mach Tools Manuf, 167 (2021), Article 103764.
[38]
S. Jeong, H. Lee, B. Lee. Effect of electron beam continuity on microstructures and mechanical properties of titanium lattice structures produced with electron beam additive manufacturing. Mater Des, 207 (2021), Article 109822.
[39]
T. Xu, S. Tang, C. Liu, Z. Li, H. Fan, S. Ma. Obtaining large-size pyramidal lattice cell structures by pulse wire arc additive manufacturing. Mater Des, 187 (2020), Article 108401.
[40]
D. Zhang, L. Qi, J. Luo, H. Yi, X. Hou. Direct fabrication of unsupported inclined aluminum pillars based on uniform micro droplets deposition. Int J Mach Tools Manuf, 116 (2017), pp. 18-24.
[41]
Jayabal DKK. 3D printing support-less engineered lattice structures via jetting of molten aluminum droplets [disseratation]. Rochester: Rochester Institute of Technology; 2019.
[42]
D. Zhang, L. Qi, J. Luo, H. Yi, W. Xiong, Y. Mo. Parametric mapping of linear deposition morphology in uniform metal droplet deposition technique. J Mater Process Technol, 264 (2019), pp. 234-239.
[43]
W. Li, M. Xu, Y. Zhang, J. Lei, Z. Li, Y. Huang, et al. Computational study on structures of vertical columns formed by successive droplets. J Mater Process Technol, 288 (2021), Article 116903.
[44]
Y. Dou, J. Luo, L. Qi, H. Lian, X. Hou. Generation mechanism and suppression method of landing error of two successively deposited metal droplets caused by coalescence and solidification. Int J Heat Mass Transf, 172 (2021), Article 121100.
[45]
Kapil N. Kayarthaya V. Sharma A. Sharma. Capturing droplet flight and impingement behavior in plasma-MIG process for metal droplet-on-demand applications. J Mater Process Technol, 316 (2023), Article 117955.
[46]
Z. Yu, Z. Pan, D. Ding, Z. Rong, H. Li, B. Wu. Strut formation control and processing time optimization for wire arc additive manufacturing of lattice structures. J Manuf Process, 79 (2022), pp. 962-974.
[47]
T. Abe, H. Sasahara. Layer geometry control for the fabrication of lattice structures by wire and arc additive manufacturing. Addit Manuf, 28 (2019), pp. 639-648.
[48]
Y. Li, S. Yu, Y. Chen, R. Yu, Y. Shi. Wire and arc additive manufacturing of aluminum alloy lattice structure. J Manuf Process, 50 (2020), pp. 510-519.
[49]
T. Xu, J. Huang, Y. Cui, C. Jing, T. Lu, S. Ma, et al. Exploring a novel panel-core connection method of large size lattice sandwich structure based on wire arc additive manufacturing. Mater Des, 212 (2021), Article 110223.
[50]
H. Monteiro, G. Carmona-Aparicio, I. Lei, M. Despeisse. Energy and material efficiency strategies enabled by metal additive manufacturing—a review for the aeronautic and aerospace sectors. Energy Rep, 8 (2022), pp. 298-305.
[51]
Z. Li, Y. Cui, L. Wang, H. Zhang, Z. Liang, C. Liu, et al. An investigation into Ti-22Al-25Nb in-situ fabricated by electron beam freeform fabrication with an innovative twin-wire parallel feeding method. Addit Manuf, 50 (2022), Article 102552.
[52]
Sinha B. Swain A. Behera P. Mallick S.K. Samal H.M. Vishwanatha, et al. A review on the processing of aero-turbine blade using 3D print techniques. J Manuf Mater Process, 6 (1) (2022), p. 16.
[53]
Z. Pu, D. Du, K. Wang, G. Liu, D. Zhang, Z. Liang, et al. Evolution of transformation behavior and tensile functional properties with process parameters for electron beam wire-feed additive manufactured NiTi shape memory alloys. Mater Sci Eng A, 840 (2022), Article 142977.
[54]
Z. Pu, D. Du, K. Wang, G. Liu, D. Zhang, H. Zhang, et al. Study on the NiTi shape memory alloys in-situ synthesized by dual-wire-feed electron beam additive manufacturing. Addit Manuf, 56 (2022), Article 102886.
[55]
J.G. Callanan, A.N. Black, S.K. Lawrence, D.R. Jones, D.T. Martinez, R.M. Martinez, et al. Dynamic properties of 316l stainless steel repaired using electron beam additive manufacturing. Acta Mater, 246 (2023), Article 118636.
[56]
Shcherbakov D. Gaponova A. Sliva A. Goncharov A. Gudenko R. Rodyakina, et al. Mathematical model for metal transfer study in additive manufacturing with electron beam oscillation. Crystals, 11 (12) (2021), p. 1441.
[57]
R.P. Davlyatshin, R.M. Gerasimov, Y.V. Bayandin, F.R. Saucedo-Zendejo, D.N. Trushnikov. Simulation of the multi-beam electron-beam wire-feed additive manufacturing process in a vacuum. J Phys Conf Ser, 2275 (1) (2022), Article 012006.
[58]
Z. Li, B. Chang, Y. Cui, H. Zhang, Z. Liang, C. Liu, et al. Effect of twin-wire feeding methods on the in-situ synthesis of electron beam fabricated Ti-Al-Nb intermetallics. Mater Des, 215 (2022), Article 110509.
[59]
J. Zhao, B. Zhang, X. Li, R. Li. Effects of metal-vapor jet force on the physical behavior of melting wire transfer in electron beam additive manufacturing. J Mater Process Technol, 220 (2015), pp. 243-250.
[60]
Berthelot B, Grivel E, Legrand P. New variants of DFA based on loess and lowess methods:generalization of the detrending moving average. Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2021 Jun 6-11; Toronto, ON, Canada. Piscataway: IEEE; 2021. p. 5140-4.
[61]
C.K. Kim, D.W. Cho, S. Kim, S.W. Song, K.M. Seo, Y.T. Cho. High-throughput metal 3D printing pen enabled by a continuous molten droplet transfer. Adv Sci, 10 (6) (2023), p. 2205085.
[62]
T.M. Schutzius, S. Jung, T. Maitra, G. Graeber, M. Köhme, D. Poulikakos. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature, 527 (7576) (2015), pp. 82-85.
[63]
I.A. Krinberg, G.M. Mladenov. Formation and expansion of the plasma column under electron beam-metal interaction. Vacuum, 77 (4) (2005), pp. 407-411.
[64]
Z. Liang, H. Zhang, Z. Li, D. Du, L. Wang. In situ monitoring of beam current in electron beam directed energy deposition based on adsorbed electrons. J Phys Conf Ser, 2369 (1) (2022), Article 012086.
[65]
G. Mladenov, S. Sabchevski. Potential distribution and space-charge neutralization in technological intense electron beams—an overview. Vacuum, 62 (2-3) (2001), pp. 113-122.
[66]
A.H. Persad, C.A. Ward. Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation. Chem Rev, 116 (14) (2016), pp. 7727-7767.
[67]
R. Nishio, K. Tuchida, M. Tooma, K. Suzuki. Origins of charged particles in vapor generated by electron-beam evaporation. J Appl Phys, 72 (10) (1992), pp. 4548-4555.
[68]
L.M. Parkinson, C.M. Phan. Natural vibration of an aqueous pendant drop. Exp Therm Fluid Sci, 90 (2018), pp. 48-54.
[69]
L. Wang, Y. Zhang, W. Yan. Evaporation model for keyhole dynamics during additive manufacturing of metal. Phys Rev Appl, 14 (6) (2020), Article 064039.
[70]
Hedreen M, Doyle C, Bol E, Kelley G, Ramulu M. Analysis of process physics in electron beam melting. In: Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition; 2021 Nov 1-5; New York, NY, USA; New York: The American Society of Mechanical Engineers. 2021. p. 71782.
[71]
G. Graeber, K. Regulagadda, P. Hodel, C. Küttel, D. Landolf, T.M. Schutzius, et al. Leidenfrost droplet trampolining. Nat Commun, 12 (1) (2021), p. 1727.
[72]
M.W.L. Chee, S. Balaji, G.L. Cuckston, J.R. Davidson, D.I. Wilson. Pendant drops shed from a liquid lens formed by liquid draining down the inner wall of a wide vertical tube. Exp Therm Fluid Sci, 97 (2018), pp. 364-374.
[73]
F. Xiong, C. Huang, O.L. Kafka, Y. Lian, W. Yan, M. Chen, et al. Grain growth prediction in selective electron beam melting of Ti-6Al-4V with a cellular automaton method. Mater Des, 199 (2021), Article 109410.
[74]
W. Yan, W. Ge, J. Smith, S. Lin, O.L. Kafka, F. Lin, et al. Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater, 115 (2016), pp. 403-412.
[75]
K. Jakhar, A. Chattopadhyay, A. Thakur, R. Raj. Spline based shape prediction and analysis of uniformly rotating sessile and pendant droplets. Langmuir, 33 (22) (2017), pp. 5603-5612.
[76]
W. Yan, J. Smith, W. Ge, F. Lin, W.K. Liu. Multiscale modeling of electron beam and substrate interaction: a new heat source model. Comput Mech, 56 (2) (2015), pp. 265-276.
[77]
S. Chang, H. Zhang, H. Xu, X. Sang, L. Wang, D. Du, et al. Online measurement of deposit surface in electron beam freeform fabrication. Sensors, 19 (18) (2019), p. 4001.
AI Summary AI Mindmap
PDF(4992 KB)

Accesses

Citations

Detail

Sections
Recommended

/