MEMS Huygens Clock Based on Synchronized Micromechanical Resonators

Xueyong Wei, Mingke Xu, Qiqi Yang, Liu Xu, Yonghong Qi, Ziming Ren, Juan Ren, Ronghua Huan, Zhuangde Jiang

Engineering ›› 2024, Vol. 36 ›› Issue (5) : 124-131.

PDF(3859 KB)
PDF(3859 KB)
Engineering ›› 2024, Vol. 36 ›› Issue (5) : 124-131. DOI: 10.1016/j.eng.2023.12.013
Research
Article

MEMS Huygens Clock Based on Synchronized Micromechanical Resonators

Author information +
History +

Abstract

With the continuous miniaturization of electronic devices, microelectromechanical system (MEMS) oscillators that can be combined with integrated circuits have attracted increasing attention. This study reports a MEMS Huygens clock based on the synchronization principle, comprising two synchronized MEMS oscillators and a frequency compensation system. The MEMS Huygens clock improved short-time stability, improving the Allan deviation by a factor of 3.73 from 19.3 to 5.17 ppb at 1 s. A frequency compensation system based on the MEMS oscillator’s temperature-frequency characteristics was developed to compensate for the frequency shift of the MEMS Huygens clock by controlling the resonator current. This effectively improved the long-term stability of the oscillator, with the Allan deviation improving by 1.6343 × 105 times to 30.9 ppt at 6000 s. The power consumption for compensating both oscillators simultaneously is only 2.85 mW∙°C−1. Our comprehensive solution scheme provides a novel and precise engineering solution for achieving high-precision MEMS oscillators and extends synchronization applications in MEMS.

Graphical abstract

Keywords

Frequency stability / Huygens clock / MEMS / Oscillator / Synchronization

Cite this article

Download citation ▾
Xueyong Wei, Mingke Xu, Qiqi Yang, Liu Xu, Yonghong Qi, Ziming Ren, Juan Ren, Ronghua Huan, Zhuangde Jiang. MEMS Huygens Clock Based on Synchronized Micromechanical Resonators. Engineering, 2024, 36(5): 124‒131 https://doi.org/10.1016/j.eng.2023.12.013

References

[1]
Karlquist RK, Cutler LS, Ingman EM, Johnson JL, Parisek T. A low-profile high-performance crystal oscillator for timekeeping applications. In: Proceedings of International Frequency Control Symposium; 1997 May 30; Orlando, FL, USA. Piscataway: IEEE; 1997. p. 873-84.
[2]
Andriy K, Georgiy S, Konstantin M, Patric H, Martin N, Richard R, et al. Cost-minimized 24 GHz pulse oscillator for short-range automotive radar applications. In: Proceedingof the 33rd European Microwave Conference; 2003. p. 2023 October 7; Munich, Germany. Piscataway: IEEE; 1131-4.
[3]
Hang YJ, Li RB, Liu JY, Xing L, Wang Y.The acceleration sensitive coefficient calibration of the crystal oscillator based on the GPS carrier control principle. In: Sun JD, Jiao WH, Wu HT, Lu MQ, editors. China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III; 2014 May 21- 23; Nanjing, China. Berlin, Springer; 2014. p. 511-21.
[4]
D. Antonio, D.H. Zanette, D. López.Frequency stabilization in nonlinear micromechanical oscillators. Nat Commun, 3 (1) ( 2012), p. 806
[5]
C.T. Nguyen. MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control, 54 (2) ( 2007), pp. 251-270
[6]
B.P. Otis, J.M. Rabaey. A 300-μW 1.9-GHz CMOS oscillator utilizing micromachined resonators. IEEE J Solid-State Circuits, 38 (7) ( 2003), pp. 1271-1274
[7]
C. Zuo, J. Van der Spiegel, G. Piazza. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour-mode MEMS resonators. IEEE Trans Ultrason Ferroelectr Freq Control, 57 (1) ( 2010), pp. 82-87
[8]
C.L. Dai. A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique. Sens Actuators B, 122 (2) ( 2007), pp. 375-380
[9]
C.S. Li, L.J. Hou, S.S. Li. Advanced CMOS-MEMS resonator platform. IEEE Electr Device Lett, 33 (2) ( 2012), pp. 272-274
[10]
Kourani A, Hegazi E, Ismail Y.RF MEMS reference oscillator platform with ±0.5ppm frequency stability for wireless handsets. In:Proceedings of the 2015 International Symposium on Signals, Circuits and Systems (ISSCS); 2015 Jul 9- 10 ; Iasi, Romania. Piscataway: IEEE; 2015. p. 1-4.
[11]
M. Sansa, E. Sage, E.C. Bullard, M. Gély, T. Alava, E. Colinet, et al.. Frequency fluctuations in silicon nanoresonators. Nat Nanotechnol, 11 (6) ( 2016), pp. 552-558
[12]
M. Li, H.X. Tang, M.L. Roukes. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol, 2 (2) ( 2007), pp. 114-120
[13]
J.J. Hall. Electronic effects in the elastic constants of n-type silicon. Phys Rev, 161 (3) ( 1967), pp. 756-761
[14]
Parajuli M, Sobreviela G, Zhang HM, Seshia AA.Enhancement of frequency stability in injection locked bulk mode mems oscillators. In:Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS); 2021 Jan 25- 29 ; Gainesville, FL, USA. Piscataway: IEEE; 2021. p. 941-4.
[15]
S. Pourkamali, A. Hashimura, R. Abdolvand, G.K. Ho, A. Erbil, F. Ayazi. High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps. J Microelectromech Syst, 12 (4) ( 2003), pp. 487-496
[16]
S. Pourkamali, Z. Hao, F. Ayazi. VHF single crystal silicon capacitive elliptic bulk-mode disk resonators—part II: implementation and characterization. J Microelectromech Syst, 13 (6) ( 2004), pp. 1054-1062
[17]
L. Villanueva, R. Karabalin, M. Matheny, E. Kenig, M.C. Cross, M.L. Roukes. A nanoscale parametric feedback oscillator. Nano Lett, 11 (11) ( 2011), pp. 5054-5059
[18]
A. Leuch, L. Papariello, O. Zilberberg, C.L. Degen, R. Chitra, A. Eichler. Parametric symmetry breaking in a nonlinear resonator. Phys Rev Lett, 117 (21) ( 2016), Article 214101
[19]
Sun BQ, Zhao C, Sobreviela-Falces G, Du SJ, Han FT, Zou XD.Enhanced frequency stability in a non-linear mems oscillator employing phase feedback. In:Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS); 2017 Jan 22- 26 ; Las Vegas, NV, USA. Piscataway: IEEE; 2017. p. 1115-7.
[20]
R.B. Karabalin, R. Lifshitz, M.C. Cross, M.H. Matheny, S.C. Masmanidis, M.L. Roukes. Signal amplification by sensitive control of bifurcation topology. Phys Rev Lett, 106 (9) ( 2011), Article 094102
[21]
H. Okamoto, N. Kitajima, K. Onomitsu, R. Kometani, S.I. Warisawa, S. Ishihara, et al.. High-sensitivity charge detection using antisymmetric vibration in coupled micromechanical oscillators. Appl Phys Lett, 98 (1) ( 2011), Article 014103
[22]
M. Sato, B.E. Hubbard, A.J. Sievers, B. Ilic, D.A. Czaplewski, H.G. Craighead. Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys Rev Lett, 90 (4) ( 2003), Article 044102
[23]
D. Pu, R.H. Huan, X.Y. Wei. Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization. AIP Adv, 7 (3) ( 2017), Article 035204
[24]
A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization:a universal concept in nonlinear sciences. Cambridge University Press, Cambridge ( 2003)
[25]
D.K. Agrawal, J. Woodhouse, A.A. Seshia. Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators. Phys Rev Lett, 111 (8) ( 2013), Article 084101
[26]
O. Shoshani, D. Heywood, Y.S. Yang, T.W. Kenny, S.W. Shaw. Phase noise reduction in an MEMS oscillator using a nonlinearly enhanced synchronization domain. J Microelectromech Syst, 25 (5) ( 2016), pp. 870-876
[27]
R.H. Huan, D. Pu, X.F. Wang, X.Y. Wei. Effects of phase delay on synchronization in a nonlinear micromechanical oscillator. Appl Phys Lett, 114 (23) ( 2019), Article 233501
[28]
A. Buonomo, M.P. Kennedy, A. Lo Schiavo. On the synchronization condition for superharmonic coupled QVCOs. IEEE Trans Circuits Syst I, 58 (7) ( 2011), pp. 1637-1646
[29]
A. Velichko, M. Belyaev, V. Putrolaynen, V. Perminov, A. Pergament. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators. Solid-State Electron, 141 ( 2018), pp. 40-49
[30]
L.C. Ortiz, H.K. Kwon, J. Rodriguez, Y. Chen, G.D. Vukasin, D.B. Heinz, et al.. Low-power dual mode MEMS resonators with PPB stability over temperature. J Microelectromech Syst, 29 (2) ( 2020), pp. 190-201
[31]
L. Xu, S. Wang, Z. Jiang,X. Wei. Programmable synchronization enhanced MEMS resonant accelerometer. Microsystem Nanoeng, 6 (1) ( 2020), p. 63
[32]
D. Antonio, D.A. Czaplewski, J.R. Guest, D. López, S.I. Arroyo, D.H. Zanette. Nonlinearity-induced synchronization enhancement in micromechanical oscillators. Phys Rev Lett, 114 (3) ( 2015), Article 034103
[33]
Y. Wang, Q. Jin, R. Zhang. Improved fuzzy PID controller design using predictive functional control structure. ISA Trans, 71 (Pt 2) ( 2017), pp. 354-363
[34]
T. Nuchkrua, T. Leephakpreeda. Fuzzy self-tuning PID control of hydrogen-driven pneumatic artificial muscle actuator. J Bionic Eng, 10 (3) ( 2013), pp. 329-340
AI Summary AI Mindmap
PDF(3859 KB)

Accesses

Citations

Detail

Sections
Recommended

/