
MEMS Huygens Clock Based on Synchronized Micromechanical Resonators
Xueyong Wei, Mingke Xu, Qiqi Yang, Liu Xu, Yonghong Qi, Ziming Ren, Juan Ren, Ronghua Huan, Zhuangde Jiang
Engineering ›› 2024, Vol. 36 ›› Issue (5) : 124-131.
MEMS Huygens Clock Based on Synchronized Micromechanical Resonators
With the continuous miniaturization of electronic devices, microelectromechanical system (MEMS) oscillators that can be combined with integrated circuits have attracted increasing attention. This study reports a MEMS Huygens clock based on the synchronization principle, comprising two synchronized MEMS oscillators and a frequency compensation system. The MEMS Huygens clock improved short-time stability, improving the Allan deviation by a factor of 3.73 from 19.3 to 5.17 ppb at 1 s. A frequency compensation system based on the MEMS oscillator’s temperature-frequency characteristics was developed to compensate for the frequency shift of the MEMS Huygens clock by controlling the resonator current. This effectively improved the long-term stability of the oscillator, with the Allan deviation improving by 1.6343 × 105 times to 30.9 ppt at 6000 s. The power consumption for compensating both oscillators simultaneously is only 2.85 mW∙°C−1. Our comprehensive solution scheme provides a novel and precise engineering solution for achieving high-precision MEMS oscillators and extends synchronization applications in MEMS.
Frequency stability / Huygens clock / MEMS / Oscillator / Synchronization
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
/
〈 |
|
〉 |