Development of an Integrated CMUTs-Based Resonant Biosensor for Label-Free Detection of DNA with Improved Selectivity by Ethylene-Glycol Alkanethiols

Zhikang Li, Yihe Zhao, Gian Luca Barbruni, Jie Li, Zixuan Li, Jiawei Yuan, Ping Yang, Libo Zhao, Zhuangde Jiang, Sandro Carrara

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 231-241.

PDF(4407 KB)
PDF(4407 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 231-241. DOI: 10.1016/j.eng.2023.12.015
Research
Article

Development of an Integrated CMUTs-Based Resonant Biosensor for Label-Free Detection of DNA with Improved Selectivity by Ethylene-Glycol Alkanethiols

Author information +
History +

Abstract

Gravimetric resonant-inspired biosensors have attracted increasing attention in industrial and point-of-care applications, enabling label-free detection of biomarkers such as DNA and antibodies. Capacitive micromachined ultrasonic transducers (CMUTs) are promising tools for developing miniaturized high-performance biosensing complementary metal-oxide-silicon (CMOS) platforms. However, their operability is limited by inefficient functionalization, aggregation, crosstalk in the buffer, and the requirement for an external high-voltage (HV) power supply. In this study, we aimed to propose a CMUTs-based resonant biosensor integrated with a CMOS front-end interface coupled with ethylene-glycol alkanethiols to detect single-stranded DNA oligonucleotides with large specificity. The topography of the functionalized surface was characterized by energy-dispersive X-ray microanalysis. Improved selectivity for on-chip hybridization was demonstrated by comparing complementary and non-complementary single-stranded DNA oligonucleotides using fluorescence imaging technology. The sensor array was further characterized using a five-element lumped equivalent model. The 4 mm2 application-specific integrated circuit chip was designed and developed through 0.18 μm HV bipolar-CMOS-double diffused metal-oxide-silicon (DMOS) technology (BCD) to generate on-chip 20 V HV boosting and to track feedback frequency under a standard 1.8 V supply, with a total power consumption of 3.8 mW in a continuous mode. The measured results indicated a detection sensitivity of 7.943 × 10−3 μmol∙L−1∙Hz−1 over a concentration range of 1 to 100 μmol∙L−1. In conclusion, the label-free biosensing of DNA under dry conditions was successfully demonstrated using a microfabricated CMUT array with a 2 MHz frequency on CMOS electronics with an internal HV supplier. Moreover, ethylene-glycol alkanethiols successfully deposited self-assembled monolayers on aluminum electrodes, which has never been attempted thus far on CMUTs, to enhance the selectivity of bio-functionalization. The findings of this study indicate the possibility of full-on-chip DNA biosensing with CMUTs.

Graphical abstract

Keywords

Capacitive micromachined ultrasonic transducers (CMUTs) / DNA detection / Self-assembled monolayer (SAM) / Ethylene-glycol alkanethiols / Application-specific integrated circuit (ASIC)

Cite this article

Download citation ▾
Zhikang Li, Yihe Zhao, Gian Luca Barbruni, Jie Li, Zixuan Li, Jiawei Yuan, Ping Yang, Libo Zhao, Zhuangde Jiang, Sandro Carrara. Development of an Integrated CMUTs-Based Resonant Biosensor for Label-Free Detection of DNA with Improved Selectivity by Ethylene-Glycol Alkanethiols. Engineering, 2024, 41(10): 231‒241 https://doi.org/10.1016/j.eng.2023.12.015

References

[1]
J. Daniels, S. Wadekar, K. DeCubellis, G.W. Jackson, A.S. Chiu, Q. Pagneux, et al. A mask-based diagnostic platform for point-of-care screening of COVID-19. Biosens Bioelectron, 192 (2021), Article 113486.
[2]
J. Chen, C. Hu, L. Chen, L. Tang, Y. Zhu, X. Xu, et al. Clinical study of mesenchymal stem cell treatment for acute respiratory distress syndrome induced by epidemic influenza A (H7N9) infection: a hint for COVID-19 treatment. Engineering, 6 (10) (2020), pp. 1153-1161.
[3]
M.D. Baaske, M.R. Foreman, F. Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat Nanotechnol, 9 (11) (2014), pp. 933-939.
[4]
J. Mertens, C. Rogero, M. Calleja, D. Ramos, J.A. Martín-Gago, C. Briones, et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol, 3 (2008), pp. 301-307.
[5]
H. Altug, S.H. Oh, S.A. Maier, J. Homola. Advances and applications of nanophotonic biosensors. Nat Nanotechnol, 17 (1) (2022), pp. 5-16.
[6]
Y. Du, B. Li, E. Wang. “Fitting” makes “Sensing” simple: label-free detection strategies based on nucleic acid aptamers. Acc Chem Res, 46 (2) (2013), pp. 203-213.
[7]
B.G. Andryukov, N.N. Besednova, R.V. Romashko, T.S. Zaporozhets, T.A. Efimov. Label-free biosensors for laboratory-based diagnostics of infections: current achievements and new trends. Biosensors, 10 (2) (2020), p. 11.
[8]
E.H. Koh, W.C. Lee, Y.J. Choi, J.I. Moon, J. Jang, S.G. Park, et al. A wearable surface-enhanced Raman scattering sensor for label-free molecular detection. ACS Appl Mater Interfaces, 13 (2) (2021), pp. 3024-3032.
[9]
B. Yin, W.K.H. Ho, Q. Zhang, C. Li, Y. Huang, J. Yan, et al. Magnetic-responsive surface-enhanced Raman scattering platform with tunable hot spot for ultrasensitive virus nucleic acid detection. ACS Appl Mater Interfaces, 14 (3) (2022), pp. 4714-4724.
[10]
J. Yoon, M. Shin, J.Y. Lee, S.N. Lee, J.H. Choi, J.W. Choi. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release, 342 (2022), pp. 228-240.
[11]
X. Zhang, Y. Liu, S. Du, Y. Yin, L. Kong, Y. Chang, et al. Engineering a rolling-circle strand displacement amplification mediated label-free ultrasensitive electrochemical biosensing platform. Anal Chem, 93 (27) (2021), pp. 9568-9574.
[12]
C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, et al. CMOS DNA sensor array with integrated A/D conversion based on label-free capacitance measurement. IEEE J Solid-State Circuits, 41 (12) (2006), pp. 2956-2964.
[13]
J. Zhou, X. Zhao, G. Huang, X. Yang, Y. Zhang, X. Zhan, et al. Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments. ACS Sens, 6 (5) (2021), pp. 1884-1890.
[14]
R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, et al. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosens Bioelectron, 188 (2021), Article 113336.
[15]
K. Noi, K. Ikenaka, H. Mochizuki, Y. Goto, H. Ogi. Disaggregation behavior of amyloid β fibrils by anthocyanins studied by total-internal-reflection-fluorescence microscopy coupled with a wireless quartz-crystal microbalance biosensor. Anal Chem, 93 (32) (2021), pp. 11176-11183.
[16]
S. Yousuf, J. Kim, A. Orozaliev, M.S. Dahlem, Y.A. Song, J. Viegas. Label-free detection of morpholino-DNA hybridization using a silicon photon suspended slab micro-ring resonator. IEEE Photon J, 13 (4) (2021), pp. 1-9.
[17]
R. Ghayoor, S. Zangenehzadeh, A. Keshavarz. Design of high-sensitivity surface plasmon resonance sensor based on nanostructured thin films for effective detection of DNA hybridization. Plasmonics, 17 (4) (2022), pp. 1831-1841.
[18]
S. Anwar, M.B. Khawar, M. Ovais, A. Afzal, X. Zhang. Gold nanocubes based optical detection of HIV-1 DNA via surface enhanced Raman spectroscopy. J Pharm Biomed Anal, 226 (2023), Article 115242.
[19]
A. Lomae, P. Preechakasedkit, O. Hanpanich, T. Ozer, C.S. Henry, A. Maruyama, et al. Label free electrochemical DNA biosensor for COVID-19 diagnosis. Talanta, 253 (2023), Article 123992.
[20]
P.H. Lai, L.S. Tseng, C.M. Yang, M.S.C. Lu. Design and characterization of a 16×16 CMOS capacitive DNA sensor array. IEEE Sens J, 23 (8) (2023), pp. 8120-8127.
[21]
N. Li, F. Zhang. THz-PCR based on resonant coupling between middle infrared and DNA carbonyl vibrations. ACS Appl Mater Interfaces, 15 (6) (2023), pp. 8224-8231.
[22]
A. Salim, S. Lim. Recent advances in noninvasive flexible and wearable wireless biosensors. Biosens Bioelectron, 141 (2019), Article 111422.
[23]
G. Balakrishnan, J. Song, C. Mou, C.J. Bettinger. Recent progress in materials chemistry to advance flexible bioelectronics in medicine. Adv Mater, 34 (10) (2022), Article 2106787.
[24]
Y. Yang, W. Gao. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev, 48 (6) (2019), pp. 1465-1491.
[25]
Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu, F. Wang, et al. Flexible hybrid electronics for digital healthcare. Adv Mater, 32 (15) (2020), Article 1902062.
[26]
J. Gao, K. Shang, Y. Ding, Z. Wen. Material and configuration design strategies towards flexible and wearable power supply devices: a review. J Mater Chem A, 9 (14) (2021), pp. 8950-8965.
[27]
Q. He, Y. Cheng, Y. Deng, F. Wen, Y. Lai, H. Li. Conductive hydrogel for flexible bioelectronic device: current progress and future perspective. Adv Funct Mater, 34 (1) (2023), Article 2308974.
[28]
P.J. Jandas, K. Prabakaran, J. Luo, M.G. Holaday. Effective utilization of quartz crystal microbalance as a tool for biosensing applications. Sens Actuator A Phys, 331 (2021), Article 113020.
[29]
R.M.R. Pinto, V. Chu, J.P. Conde. Label-free biosensing of DNA in microfluidics using amorphous silicon capacitive micro-cantilevers. IEEE Sens J, 20 (16) (2020), pp. 9018-9028.
[30]
J. Zhou, D. Zhang, Y. Liu, F. Zhuo, L. Qian, H. Li, et al. Record-breaking frequency of 44 GHz based on the higher order mode of surface acoustic waves with LiNbO3/SiO2/SiC heterostructures. Engineering, 20 (2023), pp. 112-119.
[31]
M. Bharati, L. Rana, R. Gupta, A. Sharma, P.K. Jha, M. Tomar. Realization of a DNA biosensor using inverted Lamb wave MEMS resonator based on ZnO/SiO2/Si/ZnO membrane. Anal Chim Acta, 1249 (2023), Article 340929.
[32]
Y. Zhang, J. Luo, A.J. Flewitt, Z. Cai, X. Zhao. Film bulk acoustic resonators (FBARs) as biosensors: a review. Biosens Bioelectron, 116 (2018), pp. 1-15.
[33]
F. Pop, B. Herrera, M. Rinaldi. Lithium niobate piezoelectric micromachined ultrasonic transducers for high data-rate intrabody communication. Nat Commun, 13 (1) (2022), p. 1782.
[34]
E. Şennik, F. Erden, N. Constantino, Y.Y. Oh, R.A. Dean, Ö. Oralkan. Electronic nose system based on a functionalized capacitive micromachined ultrasonic transducer (CMUT) array for selective detection of plant volatiles. Sens Actuators B Chem, 341 (2021), Article 130001.
[35]
S. Park, I. Yoon, S. Lee, H. Kim, J.W. Seo, Y.Y. Chung, et al. CMUT-based resonant gas sensor array for VOC detection with low operating voltage. Sens Actuators B Chem, 273 (2018), pp. 1556-1563.
[36]
L. Zhao, Z. Jiang, Z. Li, Y. Zhao. Huang ( Ed.),Modeling of electrostatically actuated microplates. Q.A. Micro electro mechanical systems, Springer, Singapore (2018), pp. 99-153.
[37]
D. Virzonis, G. Vanagas, A. Ramanaviciene, A. Makaraviciute, D. Barauskas, A. Ramanavicius, et al. Resonant gravimetric immunosensing based on capacitive micromachined ultrasound transducers. Mikrochim Acta, 181 (13-14) (2014), pp. 1749-1757.
[38]
W. Pang, H. Zhao, E.S. Kim, H. Zhang, H. Yu, X. Hu. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection. Lab Chip, 12 (1) (2012), pp. 29-44.
[39]
M.H. Zhao, Z.L. Wang, S.X. Mao. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett, 4 (4) (2004), pp. 587-590.
[40]
I.L. Guy, S. Muensit, E.M. Goldys. Extensional piezoelectric coefficients of gallium nitride and aluminum nitride. Appl Phys Lett, 75 (26) (1999), pp. 4133-4135.
[41]
K. Brenner, A.S. Ergun, K. Firouzi, M.F. Rasmussen, Q. Stedman, B. Khuri-Yakub. Advances in capacitive micromachined ultrasonic transducers. Micromachines, 10 (2) (2019), p. 152.
[42]
D. Barauskas, S.J. Park, D. Pelenis, G. Vanagas, J.J. Lee, D. Viržonis, et al. CO2 and SO2 interactions with methylated poly(ethylenimine)-functionalized capacitive micromachined ultrasonic transducers (CMUTs): gas sensing and degradation mechanism. ACS Appl Mater Interfaces, 1 (7) (2019), pp. 1150-1161.
[43]
Z. Zheng, N. Kim, W.S. Wong, J.T.W. Yeow. Inkjet-printed CMUT humidity sensors with high sensitivity and low hysteresis. Sens Actuators B Chem, 327 (2021), Article 128920.
[44]
Z. Zheng, Y. Yao, Y.H. Sun, J.T.W. Yeow. Development of a highly sensitive humidity sensor based on the capacitive micromachined ultrasonic transducer. Sens Actuators B Chem, 286 (2019), pp. 39-45.
[45]
L. Zhao, Y. Zhao, Y. Xia, Z. Li, J. Li, J. Zhang, et al. A novel CMUT-based resonant biochemical sensor using electrospinning technology. IEEE Trans Ind Electron, 66 (9) (2019), pp. 7356-7365.
[46]
M.M. Mahmud, C. Seok, X. Wu, E. Şennik, A.Ö. Biliroğlu, O.J. Adelegan, et al. A low-power wearable E-nose system based on a capacitive micromachined ultrasonic transducer (CMUT) array for indoor VOC monitoring. IEEE Sens J, 21 (18) (2021), pp. 19684-19696.
[47]
C. Seok, M.M. Mahmud, M. Kumar, O.J. Adelegan, F.Y. Yamaner, Ö. Oralkan. A low-power wireless multichannel gas sensing system based on a capacitive micromachined ultrasonic transducer (CMUT) array. IEEE Internet Things J, 6 (1) (2019), pp. 831-843.
[48]
H.J. Lee, K.K. Park, M. Kupnik, Ö. Oralkan, B.T. Khuri-Yakub. Chemical vapor detection using a capacitive micromachined ultrasonic transducer. Anal Chem, 83 (24) (2011), pp. 9314-9320.
[49]
Mahmud MM, Reese H, Joshipura A, Seok C, Yamaner FY, Daniele M, et al. Gravimetric biosensor based on a capacitive micromachined ultrasonic transducer functionalized with peptide ligands. In: Proceedings of the 2017 IEEE Sensors; 2017 Oct 29-Nov 1; Glasgow, UK. Piscataway: IEEE; 2017. p. 1-3.
[50]
Lee S, Eom G, Yoon I, Park S, Kook G, Kim MK, et al. Capacitive micromachined ultrasonic transducer CMUT-based biosensor for detection of low concentration neuropeptide. Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC; 2018 Jul 18-21; Honolulu HI, USA. Piscataway: IEEE; 2018. p. 2897-900.
[51]
S. Mariani, V. Robbiano, L.M. Strambini, A. Debrassi, G. Egri, L. Dähne, et al. Layer-by-layer biofunctionalization of nanostructured porous silicon for high-sensitivity and high-selectivity label-free affinity biosensing. Nat Commun, 9 (1) (2018), p. 5256.
[52]
S. Carrara, L. Benini, V. Bhalla, C. Stagni, A. Ferretti, A. Cavallini, et al. New insights for using self-assembly materials to improve the detection stability in label-free DNA-chip and immuno-sensors. Biosens Bioelectron, 24 (12) (2009), pp. 3425-3429.
[53]
Z.K. Li, L.B. Zhao, Z.D. Jiang, Z.Y. Ye, Y.L. Zhao. An improved method for the mechanical behavior analysis of electrostatically actuated microplates under uniform hydrostatic pressure. J Microelectromech Syst, 24 (2) (2015), pp. 474-485.
[54]
L. Zhao, J. Li, Z. Li, J. Zhang, Y. Zhao, J. Wang, et al. Fabrication of capacitive micromachined ultrasonic transducers with low-temperature direct wafer-bonding technology. Sens Actuators A Phys, 264 (2017), pp. 63-75.
[55]
Zhao Y, Barbruni GL, Li Z, Zhao L, Jiang Z, Enz C, et al. An ASIC interface for CMUTs-based biosensors with high voltage boosting and oscillator. USA. Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS); 2022 May 27-Jun 1; Austin, TX, Piscataway: IEEE; 2022. p. 1625-9.
[56]
B. Razavi. The transimpedance amplifier [a circuit for all seasons]. IEEE Solid-State Circuits Maga, 11 (1) (2019), pp. 10-97.
[57]
Carrara S. Co-design of a full bio/CMOS interface. In: CarraraS, editor. Bio/CMOSinterfaces and co-design. Cham: Springer; 2023. p. 431-53.
[58]
Y. Zhao, Z. Li, X. Wang, G. Luo, J. Li, Z. Li, et al. New insights for parasitic effects of label-free biosensors based on capacitive micromachined ultrasonic transducers. IEEE Sens J, 22 (21) (2022), pp. 20575-20584.
[59]
S.A. Paniagua, A.J. Giordano, O.L. Smith, S. Barlow, H. Li, N.R. Armstrong, et al. Phosphonic acids for interfacial engineering of transparent conductive oxides. Chem Rev, 116 (12) (2016), pp. 7117-7158.
[60]
P.J. Hotchkiss, S.C. Jones, S.A. Paniagua, A. Sharma, B. Kippelen, N.R. Armstrong, et al. The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc Chem Res, 45 (3) (2012), pp. 337-346.
[61]
K. Nakamura, T. Takahashi, T. Hosomi, Y. Yamaguchi, W. Tanaka, J. Liu, et al. Surface dissociation effect on phosphonic acid self-assembled monolayer formation on ZnO nanowires. ACS Omega, 7 (1) (2022), pp. 1462-1467.
[62]
N.S. Tambe, B. Bhushan. Nanotribological characterization of self-assembled monolayers deposited on silicon and aluminium substrates. Nanotechnology, 16 (9) (2005), pp. 1549-1558.
[63]
D.W. Allan. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans Ultrason Ferroelectr Freq Control, 34 (6) (1987), pp. 647-654.
[64]
S. Eaimkhong, M. Steiert, T.F. Harper, M.D. Cable, J. Gimzewski. Label-free biodetection using capacitive micromachined ultrasonic transducers (CMUTs) and its application for cardiovascular disease diagnostics. J Nanomed Nanotechnol, 3 (5) (2012), Article 100014.
[65]
H.J. Lee, K.K. Park, Ö. Oralkan, M. Kupnik, B.T. Khuri-Yakub. A multichannel oscillator for a resonant chemical sensor system. IEEE Trans Ind Electron, 61 (10) (2014), pp. 5632-5640.
[66]
G. Gonzalez. Foundations of oscillator circuit design. Artech House Inc., Norwood (2007).
[67]
B. Razavi. Design of analog CMOS integrated circuits. McGraw-Hill, New York (2000).
[68]
C. Seok, O.J. Adelegan, A.Ö. Biliroğlu, F.Y. Yamaner, Ö. Oralkan. A wearable ultrasonic neurostimulator—part II: a 2D CMUT phased array system with a flip-chip bonded ASIC. IEEE Trans Biomed Circuits Syst, 15 (4) (2021), pp. 705-718.
[69]
C.D. Herickhoff, R. van Schaijk. CMUT technology developments. Z Med Phys, 33 (3) (2023), pp. 256-266.
[70]
Lee HJ, Park KK, Cristman P, Oralkan Ö, Kupnik M, Khuri-Yakub BT. The effect of parallelism of CMUT cells on phase noise for chem/bio sensor applications. In: Proceedings of 2008 IEEE Ultrasonics Symposium; 2008 Nov 2-5; Beijing, China. Piscataway: IEEE; 2008. p. 1951-4.
[71]
Park KK, Lee HJ, Crisman P, Kupnik M, Oralkan Ö, Khuri-Yakub BT. Optimum design of circular CMUT membranes for high quality factor in air. In: Proceedings of 2008 IEEE Ultrasonics Symposium; 2008 Nov 2-5; Beijing, China. Piscataway: IEEE; 2008. p. 504-7.
AI Summary AI Mindmap
PDF(4407 KB)

Accesses

Citations

Detail

Sections
Recommended

/