Proximal Femur Bionic Nail (PFBN): A Panacea for Unstable Intertrochanteric Femur Fracture

Kaixuan Zhang, Wei Chen, Yingze Zhang

Engineering ›› 2024, Vol. 37 ›› Issue (6) : 166-172.

PDF(1126 KB)
PDF(1126 KB)
Engineering ›› 2024, Vol. 37 ›› Issue (6) : 166-172. DOI: 10.1016/j.eng.2024.01.010
Research
Article

Proximal Femur Bionic Nail (PFBN): A Panacea for Unstable Intertrochanteric Femur Fracture

Author information +
History +

Abstract

With the aging population, intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics. Due to the limitations of internal fixation techniques and the insufficient mechanical design of nails, the occurrence of complications delays patient recovery after surgical treatment. Design of a proximal femur bionic nail (PFBN) based on Zhang’s N triangle theory provides triangular supporting fixation, which dramatically decreases the occurrence of complications and has been widely used for clinical treatment of unstable intertrochanteric femur fracture worldwide. In this work, we developed an equivalent biomechanical model to analyze improvement in bone remodeling of unstable intertrochanteric femur fracture through PFBN use. The results show that compared with proximal femoral nail antirotation (PFNA) and InterTan, PFBN can dramatically decrease the maximum strain in the proximal femur. Based on Frost’s mechanostat theory, the local mechanical environment in the proximal femur can be regulated into the medium overload region by using a PFBN, which may render the proximal femur in a state of physiological overload, favoring post-operative recovery of intertrochanteric femur fracture in the elderly. This work shows that PFBN may constitute a panacea for unstable intertrochanteric femur fracture and provides insights into improving methods of internal fixation.

Graphical abstract

Keywords

Intertrochanteric femur fracture / Internal fixation / Proximal femur bionic nail (PFBN) / Biomechanics / Bone remodeling

Cite this article

Download citation ▾
Kaixuan Zhang, Wei Chen, Yingze Zhang. Proximal Femur Bionic Nail (PFBN): A Panacea for Unstable Intertrochanteric Femur Fracture. Engineering, 2024, 37(6): 166‒172 https://doi.org/10.1016/j.eng.2024.01.010

References

[1]
W. Chen, H. Lv, S. Liu, B. Liu, Y. Zhu, X. Chen, et al. National incidence of traumatic fractures in China: a retrospective survey of 512 187 individuals. Lancet Glob Health, 5 (8) (2017), pp. e807-e817.
[2]
H. Lv, W. Chen, M. Yao, Z. Hou, Y. Zhang. Collecting data on fractures: a review of epidemiological studies on orthopaedic traumatology and the Chinese experience in large volume databases. Int Orthop, 46 (5) (2022), pp. 945-951.
[3]
C.A. Brauer, M. Coca-Perraillon, D.M. Cutler, A.B. Rosen. Incidence and mortality of hip fractures in the United States. JAMA, 302 (14) (2009), pp. 1573-1579.
[4]
Zhang Y, Zhu Y, Xing X, Chen W. Research progress of fracture epidemiology. In: YeDQ, editor. Progressin China epidemiology. Singapore: Springer; 2023. p. 287-305.
[5]
A.R. Socci, N.E. Casemyr, M.P. Leslie, M.R. Baumgaertner. Implant options for the treatment of intertrochanteric fractures of the hip: rationale, evidence, and recommendations. Bone Joint J, 99-B (1) (2017), pp. 128-133.
[6]
N. Veronese, S. Maggi. Epidemiology and social costs of hip fracture. Injury, 49 (8) (2018), pp. 1458-1460.
[7]
S. Nie, W. Zhang, L. Zhang, P. Tang. Progress in the study of risk factors for internal fixation failure after intertrochanteric fracture. Chin J Orthop Trauma, 23 (3) (2021), pp. 233-238. Chinese.
[8]
P. Kumar, R.K. Rajnish, S. Sharma, M.S. Dhillon. Proximal femoral nailing is superior to hemiarthroplasty in AO/OTA A2 and A3 intertrochanteric femur fractures in the elderly: a systematic literature review and meta-analysis. Int Orthop, 44 (4) (2020), pp. 623-633.
[9]
Y. Zhu, W. Chen, D. Ye, Q. Zhang, H. Lyu, Z. Zheng, et al. Proximal femur N triangle theory and the design concept of proximal femur bionic nail (PFNB). Chin J Geriatr Orthop Rehabil, 7 (5) (2021), pp. 257-259. Chinese.
[10]
B. Zhang, L. Gao, L. Ma, Y. Luo, H. Yang, Z. Cui. 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering, 5 (4) (2019), pp. 777-794.
[11]
Q. Yan, H. Dong, J. Su, J. Han, B. Song, Q. Wei, et al. A review of 3D printing technology for medical applications. Engineering, 4 (5) (2018), pp. 729-742.
[12]
A.M. Wu, C. Bisignano, S.L. James, G.G. Abady, A. Abedi, E. Abu-Gharbieh, et al. GBD 2019 Fracture Collaborators. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev, 2 (9) (2021), pp. e580-e592.
[13]
Y. Zhang. Clinical epidemiology of orthopaedic trauma. (3rd ed.), Thieme, New York City (2021).
[14]
D.A. Tanner, M. Kloseck, R.G. Crilly, B. Chesworth, J. Gilliland. Hip fracture types in men and women change differently with age. BMC Geriatr, 10 (1) (2010), p. 12.
[15]
T. Hoenig, K.E. Ackerman, B.R. Beck, M.L. Bouxsein, D.B. Burr, K. Hollander, et al. Bone stress injuries. Nat Rev Dis Primers, 8 (1) (2022), p. 26.
[16]
T.F. Moriarty, W.J. Metsemakers, M. Morgenstern, M.I. Hofstee, A. Vallejo Diaz, J.E. Cassat, et al. Fracture-related infection. Nat Rev Dis Primers, 8 (1) (2022), p. 67.
[17]
C. Zhang, P. Tang, Y. Zhang, B. Yu. Trauma Orthopedics Group,Orthopedics Branch, Chinese Medical Association; Fixation and Limb Reconstruction Group, Orthopedics Branch, Chinese Medical Association. Expert consensus on weight bearing after lower limb fractures (2023). Chin J Orthop Trauma, 25 (2) (2023), pp. 93-100. Chinese.
[18]
K. Egol, P. Leucht. Proximal femur fractures: an evidence-based approach to evaluation and management. (1st ed.ed.), Springer, Berlin (2017).
[19]
W.M. Ricci, P.N. Streubel, S. Morshed, C.A. Collinge, S.E. Nork, M.J. Gardner. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma, 28 (2) (2014), pp. 83-89.
[20]
P.J. Glassner, N.C. Tejwani. Failure of proximal femoral locking compression plate: a case series. J Orthop Trauma, 25 (2) (2011), pp. 76-83.
[21]
S.M. Chang, Z.Y. Hou, S.J. Hu, S.C. Du. Intertrochanteric femur fracture treatment in Asia: what we know and what the world can learn. Orthop Clin North Am, 51 (2) (2020), pp. 189-205.
[22]
G.J. Huang, L.W. Graber, R.L. Vanarsdall, K.W. Vig. Orthodontics-E-Book:current principles and techniques. Elsevier Health Sciences, Amsterdam (2016).
[23]
S.M. Chang. Geriatric intertrochanteric hip fractures. Science Publisher, New York City (2019).
[24]
J. Gao, X. Yu, X. Wang, Y. He, J. Ding. Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine. Engineering, 13 (2022), pp. 1331-1345.
[25]
T.M. Keaveny, E.F. Morgan, G.L. Niebur, O.C. Yeh. Biomechanics of trabecular bone. Annu Rev Biomed Eng, 3 (1) (2001), pp. 307-333.
[26]
T.D. Rachner, S. Khosla, L.C. Hofbauer. Osteoporosis: now and the future. Lancet, 377 (9773) (2011), pp. 1276-1287.
[27]
F.O. Ward. Outlines of human osteology. Henry Renshaw, London (1838).
[28]
S.M. Zhang, S. Hu, S. Du, L. Zhang. Concept evolution and research progress of stability reconstruction for intertrochanteric fracture. Chin J Repar Reconstr Surg, 33 (10) (2019), pp. 331203-331209. Chinese.
[29]
M.N. Smith-Petersen, E.F. Cave, G.W. Vangorder. Intracapsular fractures of the neck of the femur: treatment by internal fixation. Arch Surg, 23 (5) (1931), pp. 715-759.
[30]
R. Whitman. A new method of treatment for fracture of the neck of the femur, together with remarks on coxa vara. Ann Surg, 36 (5) (1902), pp. 746-761.
[31]
S. Johansson. On the operative treatment of medial fractures of the neck of the femur. Acta Orthop Scand, 3 (1932), pp. 362-392.
[32]
H. Wescott. Preliminary report of a method of internal fixation of transcervical fractures of the neck of the femur in the aged. Va Med, 59 (1932), p. 197.
[33]
L. Thornton. The treatment of trochanteric fractures of the femur: two new methods. Piedmont Hosp Bull, 10 (1937), pp. 1021-1035.
[34]
E. Jewett. One-piece angle nail for trochanteric fractures. J Bone Jt Surg, 23 (1941), pp. 803-810.
[35]
E.M. Evans. The treatment of trochanteric fractures of the femur. J Bone Jt Surg Br, 31B (2) (1949), pp. 190-203.
[36]
D.K. Clawson. Trochanteric fractures treated by the sliding screw plate fixation method. J Trauma, 4 (6) (1964), pp. 737-752.
[37]
K. De Bruijn, D. den Hartog, W. Tuinebreijer, G. Roukema. Reliability of predictors for screw cutout in intertrochanteric hip fractures. J Bone Joint Surg Am, 94 (14) (2012), pp. 1266-1272.
[38]
S.Y. Kim, Y.G. Kim, J.K. Hwang. Cementless calcar-replacement hemiarthroplasty compared with intramedullary fixation of unstable intertrochanteric fractures. A prospective, randomized study. J Bone Joint Surg Am, 87 (10) (2005), pp. 2186-2192.
[39]
H. Kuderna, N. Böhler, D.J. Collon. Treatment of intertrochanteric and subtrochanteric fractures of the hip by the Ender method. J Bone Joint Surg Am, 58 (5) (1976), pp. 604-611.
[40]
S.C. Halder. The Gamma nail for peritrochanteric fractures. J Bone Joint Surg Br, 74 (3) (1992), pp. 340-344.
[41]
M. Liu, Z. Yang, F. Pei, F. Huang, S. Chen, Z. Xiang. A meta-analysis of the Gamma nail and dynamic hip screw in treating peritrochanteric fractures. Int Orthop, 34 (3) (2010), pp. 323-328.
[42]
R.K. Simmermacher, A.M. Bosch, C. van der Werken. The AO/ASIF-proximal femoral nail (PFN): a new device for the treatment of unstable proximal femoral fractures. Injury, 30 (5) (1999), pp. 327-332.
[43]
R.K. Simmermacher, J. Ljungqvist, H. Bail, T. Hockertz, A.J. Vochteloo, U. Ochs, et al. AO-PFNA studygroup. The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury, 39 (8) (2008), pp. 932-939.
[44]
A. Arirachakaran, T. Amphansap, P. Thanindratarn, P. Piyapittayanun, P. Srisawat, J. Kongtharvonskul. Comparative outcome of PFNA, Gamma nails, PCCP, Medoff plate, LISS and dynamic hip screws for fixation in elderly trochanteric fractures: a systematic review and network meta-analysis of randomized controlled trials. Eur J Orthop Surg Traumatol, 27 (7) (2017), pp. 937-952.
[45]
C. Carulli, F. Piacentini, T. Paoli, R. Civinini, M. Innocenti. A comparison of two fixation methods for femoral trochanteric fractures: a new generation intramedullary system vs sliding hip screw. Clin Cases Miner Bone Metab, 14 (1) (2017), pp. 40-47.
[46]
P. Chen, D. Fu. Failure analysis of proximal femoral nail antirotation in treatment of geriatric intertrochanteric fractures. Chin J Repar Reconstr Surg, 33 (10) (2019), pp. 1270-1274. Chinese.
[47]
P.E. Bovbjerg, M.S. Larsen, C.F. Madsen, J. Schønnemann. Failure of short versus long cephalomedullary nail after intertrochanteric fractures. J Orthop, 18 (2020), pp. 18209-18212.
[48]
Y. Liu, R. Tao, F. Liu, Y. Wang, Z. Zhou, Y. Cao, et al. Mid- term outcomes after intramedullary fixation of peritrochanteric femoral fractures using the new proximal femoral nail antirotation (PFNA). Injury, 41 (8) (2010), pp. 810-817.
[49]
S. Zhang, K. Zhang, Y. Jia, B. Yu, W. Feng. InterTan nail versus proximal femoral nail antirotation—Asia in the treatment of unstable trochanteric fractures. Orthopedics, 36 (3) (2013), pp. e288-e294.
[50]
Y. Zhang, H. Wang, W. Chen, Y. Zhu, K. Ding, Z. Hou, et al. Triangular supporting fixation: an innovative surgical approach for intertrochanteric fractures of the femur—evidence from a biomechanical study. Chin J Orthop Trauma, 23 (6) (2021), pp. 461-466. Chinese.
[51]
H.C. Wang, Y.F. Zhang, C. Ren, K. Ding, Q. Zhang, Y.B. Zhu, et al. Biomechanical properties and clinical significance of cancellous bone in proximal femur: a review. Injury, 54 (2023), pp. 1432-1518.
[52]
K. Ding, Y. Zhu, Y. Li, H. Wang, X. Cheng, W. Yang, et al. Triangular support intramedullary nail: a new internal fixation innovation for treating intertrochanteric fracture and its finite element analysis. Injury, 53 (6) (2022), pp. 1796-1804.
[53]
Y. Wang, W. Chen, L. Zhang, C. Xiong, X. Zhang, K. Yu, et al. Finite element analysis of proximal femur bionic nail (PFBN) compared with proximal femoral nail antirotation and InterTan in treatment of intertrochanteric fractures. Orthop Surg, 14 (9) (2022), pp. 2245-2255.
[54]
P. Chen, Z. Fan, N. Xu, H. Wang. A biomechanical investigation of a novel intramedullary nail used to salvage failed internal fixations in intertrochanteric fractures. J Orthop Surg Res, 18 (1) (2023), p. 632.
[55]
X. Cheng, Y. Yang, J. Zhu, G. Li, W. Chen, J. Wang, et al. Finite element analysis of basicervical femoral neck fracture treated with proximal femoral bionic nail. J Orthop Surg Res, 18 (1) (2023), p. 926.
[56]
H. Wang, W. Yang, K. Ding, Y. Zhu, Y. Zhang, C. Ren, et al. Biomechanical study on the stability and strain conduction of intertrochanteric fracture fixed with proximal femoral nail antirotation versus triangular supporting intramedullary nail. Int Orthop, 46 (2) (2022), pp. 341-350.
[57]
P.H. Li. Curve fitting and interpolation. P.H. Li (Ed.), Numerical methods using Java: for data science, analysis, and engineering, Apress, Berkeley (2022), pp. 241-270.
[58]
F. Pauwels. Atlas zur biomechanik der gesunden und kranken hüfte: prinzipien, technik und resultate einer kausalen therapie. Springer-Verlag, Berlin (2013). German.
[59]
D.A. Neumann. Hip abductor muscle activity as subjects with hip prostheses walk with different methods of using a cane. Phys Ther, 78 (5) (1998), pp. 490-501.
[60]
H.M. Frost. Bone “mass” and the “mechanostat”: a proposal. Anat Rec, 219 (1) (1987), pp. 1-9.
[61]
X.Z. Zhang. The research on mechanobiology mechanism of bone remodeling. J Med Biomech, 31 (4) (2016), pp. 356-361. Chinese.
[62]
L. Wang, X. You, L. Zhang, C. Zhang, W. Zou. Mechanical regulation of bone remodeling. Bone Res, 10 (1) (2022), p. 16.
[63]
Zhang Y, Chen W, Zhang Q, Qin S inventors; Shumin Cao,Changgeng Chen, assignee. Triangular support intramedullary nail for the treatment of femoral neck and intertrochanteric fractures. China Patent CN101695454A. 2010 Apr 21. Chinese.
[64]
Zhang Y, Chen W, Zhang Q inventors; Shumin Cao,Changgeng Chen, assignee. Triangular support plates for femoral neck and intertrochanteric fractures. China Patent CN10695455A. 2010 Apr 21. Chinese.
[65]
H. Zhao, X. Deng, W. Liu, W. Chen, L. Wang, Y. Zhang, et al. Proximal femoral bionic nail (PFBN)—an innovative surgical method for unstable femoral intertrochanteric fractures. Int Orthop, 47 (4) (2023), pp. 1089-1099.
[66]
D. Yang, Q. Wang, Z. Luan, J. Ling, P. Chen, X. Chen, et al. Effectiveness of proximal femur bionic nail for intertrochanteric fracture in the elderly. Chin J Repar Reconstr Surg, 37 (10) (2023), pp. 1198-1204. Chinese.
[67]
C. Jia, W. Yu, Y. Wang, Z. Qian, Z. He, W. Zhu. Proximal femoral bionic intramedullary nail versus InterTAN intramedullary nail in the treatment of intertrochanteric femoral fractures in elderly patients. J Clin Med Pract, 27 (21) (2023), pp. 88-91. Chinese.
[68]
C.A. Gallagher, C.W. Jones, L. Kimmel, C. Wylde, A. Osbrough, M. Bulsara, et al. Osteoarthritis is associated with increased failure of proximal femoral fracture fixation. Int Orthop, 43 (5) (2019), pp. 1223-1230.
[69]
X. Chen, X. Zhu, A. Wei, F. Chen, Q. Gao, K. Lu, et al. Nrf 2 epigenetic derepression induced by running exercise protects against osteoporosis. Bone Res, 9 (1) (2021), p. 15.
[70]
L. Zheng, Z. Zhuang, Y. Li, T. Shi, K. Fu, W. Yan, et al. Bone targeting antioxidative nano-iron oxide for treating postmenopausal osteoporosis. Bioact Mater, 14 (2022), pp. 14250-14261.
AI Summary AI Mindmap
PDF(1126 KB)

Accesses

Citations

Detail

Sections
Recommended

/