Rational Engineering of Secondary Metabolic Pathways in a Heterologous Host to Enable the Biosynthesis of Hibarimicin Derivatives with Enhanced Anti-Melanomic Activity

Xiangyang Liu, Fei-Peng Zhao, Tian Tian, Wei-Chen Wang, Zaizhou Liu, Qiang Zhou, Xian-Feng Hou, Jing Wang, Wenli Guo, Shuangjun Lin, Yasuhiro Igarashi, Gong-Li Tang

Engineering ›› 2024, Vol. 38 ›› Issue (7) : 113-123.

PDF(2773 KB)
PDF(2773 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 113-123. DOI: 10.1016/j.eng.2024.01.012
Research
Article

Rational Engineering of Secondary Metabolic Pathways in a Heterologous Host to Enable the Biosynthesis of Hibarimicin Derivatives with Enhanced Anti-Melanomic Activity

Author information +
History +

Abstract

A 61-kb biosynthetic gene cluster (BGC), which is accountable for the biosynthesis of hibarimicin (HBM) B from Microbispora rosea subsp. hibaria TP-A0121, was heterologously expressed in Streptomyces coeli-color M1154, which generated a trace of the target products but accumulated a large amount of shunt products. Based on rational analysis of the relevant secondary metabolism, directed engineering of the biosynthetic pathways resulted in the high production of HBM B, as well as new HBM derivates with improved antitumor activity. These results not only establish a biosynthetic system to effectively synthesize HBMs-a class of the largest and most complex Type-II polyketides, with a unique pseudo-dimeric structure-but also set the stage for further engineering and deep investigation of this complex biosynthetic pathway toward potent anticancer drugs.

Graphical abstract

Keywords

Hibarimicin / Biosynthesis / Heterologous expression / Biosynthetic gene cluster / Rational engineering / Type-II polyketide

Cite this article

Download citation ▾
Xiangyang Liu, Fei-Peng Zhao, Tian Tian, Wei-Chen Wang, Zaizhou Liu, Qiang Zhou, Xian-Feng Hou, Jing Wang, Wenli Guo, Shuangjun Lin, Yasuhiro Igarashi, Gong-Li Tang. Rational Engineering of Secondary Metabolic Pathways in a Heterologous Host to Enable the Biosynthesis of Hibarimicin Derivatives with Enhanced Anti-Melanomic Activity. Engineering, 2024, 38(7): 113‒123 https://doi.org/10.1016/j.eng.2024.01.012

References

[1]
T. Kajiura, T. Furumai, Y. Igarashi, H. Hori, K. Higashi, T. Ishiyama, et al.Signal transduction inhibitors, hibarimicins, A, B, C, D and G produced by Microbispora. I. Taxonomy, fermentation, isolation and physico-chemical and biological properties. J Antibiot, 51 (4) (1998), pp. 394-401
[2]
H. Hori, Y. Igarashi, T. Kajiura, T. Furumai, K. Higashi, T. Ishiyama, et al.Signal transduction inhibitors, hibarimicins A, B, C, D and G produced by Microbispora. II. Structural studies. J Antibiot, 51 (4) (1998), pp. 402-417
[3]
S.I. Cho, H. Fukazawa, Y. Honma, T. Kajiura, H. Hori, Y. Igarashi, et al. Effects of hibarimicins and hibarimicin-related compounds produced by Microbispora on v-Src kinase activity and growth and differentiation of human myeloid leukemia HL-60 cells. J Antibiot, 55 (3) (2002), pp. 270-278
[4]
I.M. Romaine, J.E. Hempel, G. Shanmugam, H. Hori, Y. Igarashi, P.L. Polavarapu, et al. Assignment and stereocontrol of hibarimicin atropoisomers. Org Lett, 13 (17) (2011), pp. 4538-4541
[5]
S. Narayan, W.R. Roush. Studies toward the total synthesis of angelmicin B (hibarimicin B): synthesis of a model CD-D’ arylnaphthoquinone. Org Lett, 6 (21) (2004), pp. 3789-3792
[6]
B.B. Liau, B.C. Milgram, M.D. Shair. Total syntheses of HMP-Y1, hibarimicinone, and HMP-P1. J Am Chem Soc, 134 (40) (2012), pp. 16765-16772
[7]
J.E. Hempel, D.W. Engers, G.A. Sulikowski. Synthetic studies directed toward the AB decalin common to HMP-Y1 and hibarimicinone. Tetrahedron Lett, 55 (13) (2014), pp. 2157-2159
[8]
I.M. Romaine, G.A. Sulikowski. Studies on a biomimetic oxidative dimerization approach to the hibarimicins. Tetrahedron Lett, 56 (23) (2015), pp. 3617-3619
[9]
K. Tatsuta, S. Hosokawa. Total synthesis of hibarimicinone, a v-Src tyrosine kinase inhibitor possessing the pseudo-dimer structure of tetracycline. Chem Rec, 14 (1) (2014), pp. 28-40
[10]
H. Hori, T. Kajiura, Y. Igarashi, T. Furumai, K. Higashi, T. Ishiyama, et al. Biosynthesis of hibarimicins. I. 13C-labeling experiments. J Antibiot, 55 (1) (2002), pp. 46-52
[11]
T. Kajiura, T. Furumai, Y. Igarashi, H. Hori, K. Higashi, T. Ishiyama, et al. Biosynthesis of hibarimicins. II. Elucidation of biosynthetic pathway by cosynthesis using blocked mutants. J Antibiot, 55 (1) (2002), pp. 53-60
[12]
Y. Igarashi, T. Kajiura, T. Furumai, H. Hori, K. Higashi, T. Ishiyama, et al. Biosynthesis of hibarimicins. III. Structures of new hibarimicin-related metabolites produced by blocked mutants. J Antibiot, 55 (1) (2002), pp. 61-70
[13]
J.J. Zhang, X. Tang, B.S. Moore. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep, 36 (10) (2019), pp. 1313-1332
[14]
L. Huo, J.J. Hug, C. Fu, X. Bian, Y. Zhang, R. Müller. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep, 36 (10) (2019), pp. 1412-1436
[15]
L. Li, L.W. Maclntyre, S.F. Brady. Refactoring biosynthetic gene clusters for heterologous production of microbial natural products. Curr Opin Biotechnol, 69 (2021), pp. 145-152
[16]
X. Li, X. Hu, Y. Sheng, H. Wang, M. Tao, Y. Ou, et al. Adaptive optimization boosted the production of moenomycin A in the microbial chassis Streptomyces albus J1074. ACS Synth Biol, 10 (9) (2021), pp. 2210-2221
[17]
Z.F. Pei, M.J. Yang, K. Zhang, X.H. Jian, G.L. Tang. Heterologous characterization of mechercharmycin A biosynthesis reveals alternative insights into post-translational modifications for RiPPs. Cell Chem Biol, 29 (4) (2022), pp. 650-659
[18]
J. Sambrook, D.W. Russell. Molecular cloning: a laboratory manual. (3rd ed.), Cold Spring Harbor Laboratory Press, New York City (2001)
[19]
H. Wang, X. Bian, L. Xia, X. Ding, R. Müller, Y. Zhang, et al. Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res, 42 (5) (2014), p. e37
[20]
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces genetics. Norwich: John Innes Foundation; 2000.
[21]
J.P. Gomez-Escribano, M.J. Bibb. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol, 4 (2) (2011), pp. 207-215
[22]
W. Wang, X. Li, J. Wang, S. Xiang, X. Feng, K. Yang. An engineered strong promoter for Streptomycetes. Appl Environ Microbiol, 79 (14) (2013), pp. 4484-4492
[23]
W. Guo, Z. Xiao, T. Huang, K. Zhang, H.X. Pan, G.L. Tang, et al. Identification and characterization of a strong constitutive promoter stnYp for activating biosynthetic genes and producing natural products in Streptomyces. Microb Cell Fact, 22 (1) (2023), p. 127
[24]
K. Blin, S. Shaw, A.M. Kloosterman, Z. Charlop-Powers, G.P. van Wezel, M.H. Medema, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res, 49 (W1) (2021), pp. W29-W35
[25]
R. Wheeler, X. Yu, C. Hou, P. Mitra, J.M. Chen, F. Herkules, et al. Discovery of a cryptic intermediate in late steps of mithramycin biosynthesis. Angew Chem Int Ed, 59 (2) (2020), pp. 826-832
[26]
Z. Qian, T. Bruhn, P.M. D’Agostino, A. Herrmann, M. Haslbeck, N. Antal, et al. Discovery of the streptoketides by direct cloning and rapid heterologous expression of a cryptic PKS II gene cluster from Streptomyces sp. Tü 6314. J Org Chem, 85 (2) (2020), pp. 664-673
[27]
J. Kantola, T. Kunnari, A. Hautala, J. Hakala, K. Ylihonko, P. Mäntsälä. Elucidation of anthracyclinone biosynthesis by stepwise cloning of genes for anthracyclines from three different Streptomyces spp. Microbiology, 146 (Pt 1) (2000), pp. 155-163
[28]
J. Shima, A. Hesketh, S. Okamoto, S. Kawamoto, K. Ochi. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol, 178 (24) (1996), pp. 7276-7284
[29]
T. Taguchi, T. Awakawa, Y. Nishihara, M. Kawamura, Y. Ohnishi, K. Ichinose. Bifunctionality of ActIV as a cyclase-thioesterase revealed by in vitro reconstitution of actinorhodin biosynthesis in Streptomyces coelicolor A3(2). ChemBioChem, 18 (3) (2017), pp. 316-323
[30]
T. Itoh, T. Taguchi, M.R. Kimberley, K.I. Booker-Milburn, G.R. Stephenson, Y. Ebizuka, et al. Actinorhodin biosynthesis: structural requirements for post-PKS tailoring intermediates revealed by functional analysis of actVI-ORF1 reductase. Biochemistry, 46 (27) (2007), pp. 8181-8188
[31]
Z. Zhao, T. Shi, M. Xu, N.L. Brock, Y.L. Zhao, Y. Wang, et al. Hybrubins: bipyrrole tetramic acids obtained by crosstalk between a truncated undecylprodigiosin pathway and heterologous tetramic acid biosynthetic genes. Org Lett, 18 (3) (2016), pp. 572-575
[32]
I. Baig, M. Perez, A.F. Braña, R. Gomathinayagam, C. Damodaran, J.A. Salas, et al.Mithramycin analogues generated by combinatorial biosynthesis show improved bioactivity. J Nat Prod, 71 (2) (2008), pp. 199-207
[33]
L. Xie, L. Zhang, C. Wang, X. Wang, Y.M. Xu, H. Yu, et al. Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. Proc Natl Acad Sci USA, 115 (22) (2018), pp. E4980-E4989
[34]
J.R. Lohman, S.X. Huang, G.P. Horsman, P.E. Dilfer, T. Huang, Y. Chen, et al. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics. Mol BioSyst, 9 (3) (2013), pp. 478-491
[35]
E.C. Seth, M.E. Taga. Nutrient cross-feeding in the microbial world. Front Microbiol, 5 (2014), p. 350
[36]
O.M. Sokolovskaya, A.N. Shelton, M.E. Taga. Sharing vitamins: cobamides unveil microbial interactions. Science, 369 (6499) (2020), p. eaba0165
[37]
Z.Y. Ji, Q.Y. Nie, Y. Yin, M. Zhang, H.X. Pan, X.F. Hou, et al. Activation and characterization of cryptic gene cluster: two series of aromatic polyketides biosynthesized by divergent pathways. Angew Chem Int Ed, 58 (50) (2019), pp. 18046-18054
[38]
M. Cao, C. Zheng, D. Yang, E. Kalkreuter, A. Adhikari, Y.C. Liu, et al. Cryptic sulfur incorporation in thioangucycline biosynthesis. Angew Chem Int Ed, 60 (13) (2021), pp. 7140-7147
[39]
L.B. Pickens, W. Kim, P. Wang, H. Zhou, K. Watanabe, S. Gomi, et al. Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. J Am Chem Soc, 131 (48) (2009), pp. 17677-17689
AI Summary AI Mindmap
PDF(2773 KB)

Accesses

Citations

Detail

Sections
Recommended

/