A Hybrid Integrated and Low-Cost Multi-Chip Broadband Doherty Power Amplifier Module for 5G Massive MIMO Application

Fei Huang, Guansheng Lv, Huibo Wu, Wenhua Chen, Zhenghe Feng

Engineering ›› 2024, Vol. 38 ›› Issue (7) : 223-232.

PDF(2613 KB)
PDF(2613 KB)
Engineering ›› 2024, Vol. 38 ›› Issue (7) : 223-232. DOI: 10.1016/j.eng.2024.01.017
Research
Article

A Hybrid Integrated and Low-Cost Multi-Chip Broadband Doherty Power Amplifier Module for 5G Massive MIMO Application

Author information +
History +

Abstract

In this paper, a hybrid integrated broadband Doherty power amplifier (DPA) based on a multi-chip module (MCM), whose active devices are fabricated using the gallium nitride (GaN) process and whose passive circuits are fabricated using the gallium arsenide (GaAs) integrated passive device (IPD) process, is proposed for 5G massive multiple-input multiple-output (MIMO) application. An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance, and a single-driver architecture is adopted for a chip with high gain and small area. The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm. The gain compression from 37 dBm to saturation power is less than 4 dB, and the average power-added efficiency (PAE) is 36.3% with an 8.5 dB peak-to-average power ratio (PAPR) in 4.5-5.0 GHz. The measured adjacent channel power ratio (ACPR) is better than −50 dBc after digital predistortion (DPD), exhibiting satisfactory linearity.

Graphical abstract

Keywords

5G / Doherty power amplifier / Multi-input multi-output / Multi-chip modules / Hybrid integrated

Cite this article

Download citation ▾
Fei Huang, Guansheng Lv, Huibo Wu, Wenhua Chen, Zhenghe Feng. A Hybrid Integrated and Low-Cost Multi-Chip Broadband Doherty Power Amplifier Module for 5G Massive MIMO Application. Engineering, 2024, 38(7): 223‒232 https://doi.org/10.1016/j.eng.2024.01.017

References

[1]
A. Gupta, R.K. Jha. A survey of 5G network: architecture and emerging technologies. IEEE Access, 3 (2015), pp. 1206-1232
[2]
J. Kim, J. Moon, Y.Y. Woo, S. Hong, I. Kim, J. Kim, et al. Analysis of a fully matched saturated Doherty amplifier with excellent efficiency. IEEE Trans Microw Theory Tech, 56 (2) (2008), pp. 328-338
[3]
W. Chen, S. Zhang, Y. Liu, Y. Liu, F. Ghannouchi. A concurrent dual-band uneven Doherty power amplifier with frequency-dependent input power division. IEEE Trans Circuits Syst I, 61 (2) (2014), pp. 552-561
[4]
D. Gustafsson, J.C. Cahuana, D. Kuylenstierna, I. Angelov, C. Fager. A GaN MMIC modified Doherty PA with large bandwidth and reconfigurable efficiency. IEEE Trans Microw Theory Tech, 62 (12) (2014), pp. 3006-3016
[5]
Y. Park, J. Lee, S. Jee, S. Kim, C.H. Kim, B. Park, et al. GaN HEMT MMIC Doherty power amplifier with high gain and high PAE. IEEE Microw Wirel Compon Lett, 25 (3) (2015), pp. 187-189
[6]
X. Zhou, S.Y. Zheng, W.S. Chan, S. Chen, D. Ho. Broadband efficiency-enhanced mutually coupled harmonic post matching Doherty power amplifier. IEEE Trans Circuits Syst I, 64 (7) (2017), pp. 1758-1771
[7]
D.F. Kimball, J. Jeong, C. Hsia, P. Draxler, S. Lanfranco, W. Nagy, et al. High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs. IEEE Trans Microw Theory Tech, 54 (11) (2006), pp. 3848-3856
[8]
F. Raab. Efficiency of outphasing RF power-amplifier systems. IEEE Trans Commun, 33 (10) (1985), pp. 1094-1099
[9]
V. Camarchia, J. Fang, J.M. Rubio, M. Pirola, R. Quaglia. 7 GHz MMIC GaN Doherty power amplifier with 47% efficiency at 7 dB output back-off. IEEE Microw Wirel Compon Lett, 23 (1) (2013), pp. 34-36
[10]
Giofrè R, Piazzon L, Colantonio P, Giannini F, Camarchia V, Quaglia R, et al. GaN-MMIC Doherty power amplifier with integrated reconfigurable input network for microwave backhaul applications. In: Proceedings of IEEE MTT-S International Microwave Symposium; 2015 May 17-22; Phoenix, AZ, USA; 2015.
[11]
Ayad M, Byk E, Neveux G, Camiade M, Barataud D. Single and dual input packaged 5.5-6.5 GHz, 20 W, quasi-MMIC GaN-HEMT Doherty power amplifier. In: Proceedings of IEEE MTT-S International Microwave Symposium; 2017 Jun 4-9; Honololu, HI, USA; 2017.
[12]
R. Quaglia, V. Camarchia, J.J.M. Rubio, M. Pirola, G. Ghione. A 4-W Doherty power amplifier in GaN MMIC technology for 15- GHz applications. IEEE Microw Wirel Compon Lett, 27 (4) (2017), pp. 365-367
[13]
J. Lee, D.H. Lee, S. Hong. A Doherty power amplifier with a GaN MMIC for femtocell base stations. IEEE Microw Wirel Compon Lett, 24 (3) (2014), pp. 194-196
[14]
Jee S, Park Y, Cho Y, Lee J, Kim S, Kim B. A highly linear dual-band Doherty power amplifier for femto-cell base stations. In: Proceedings of IEEE MTT-S International Microwave Symposium; 2015 May 17-22; Phoenix, AZ, USA; 2015.
[15]
C.H. Kim, B. Park. Fully-integrated two-stage GaN MMIC Doherty power amplifier for LTE small cells. IEEE Microw Wirel Compon Lett, 26 (11) (2016), pp. 918-920
[16]
Maroldt S, Ercoli M. 3.5-GHz ultra-compact GaN class-E integrated Doherty MMIC PA for 5G massive-MIMO base station applications. In: Proceedings of the 12th European Microwave Integrated Circuits Conference; 2017 Oct 8-10; Nuremberg, Germany; 2017.
[17]
Ishikawa R, Takayama Y, Honjo K. Fully integrated asymmetric Doherty amplifier based on two-power-level impedance optimization. In: Proceedings of the 13th European Microwave Integrated Circuits Conference; 2018 Sep 23-25; Madrid, Spain; 2018.
[18]
S.H. Li, S.S.H. Hsu, J. Zhang, K.C. Huang. Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications. IEEE Trans Microw Theory Tech, 66 (12) (2018), pp. 5676-5684
[19]
T. Qiang, C. Wang, N.Y. Kim. A compact high-reliability high-performance 900-MHz WPD using GaAs-IPD technology. IEEE Microw Wirel Compon Lett, 26 (7) (2016), pp. 498-500
[20]
H. Jeon, K.W. Kobayashi. Comparison of 5-GHz quadrature couplers using GaAs and silicon-based IPD technologies. IEEE Microw Wirel Compon Lett, 28 (9) (2018), pp. 756-758
[21]
C.H. Kim, S. Jee, G.D. Jo, K. Lee, B. Kim. A 2.14-GHz GaN MMIC Doherty power amplifier for small-cell base stations. IEEE Microw Wirel Compon Lett, 24 (4) (2014), pp. 263-265
[22]
D.P. Nguyen, B.L. Pham, A.V. Pham. A compact Ka-band integrated Doherty amplifier with reconfigurable input network. IEEE Trans Microw Theory Tech, 67 (1) (2019), pp. 205-215
[23]
D. Kang, D. Kim, J. Moon, B. Kim. Broadband HBT Doherty power amplifiers for handset applications. IEEE Trans Microw Theory Tech, 58 (12) (2010), pp. 4031-4039
[24]
S. Jee, J. Lee, J. Son, S. Kim, C.H. Kim, J. Moon, et al. Asymmetric broadband Doherty power amplifier using GaN MMIC for femto-cell base-station. IEEE Trans Microw Theory Tech, 63 (9) (2015), pp. 2802-2810
[25]
G. Lv, W. Chen, X. Liu, F.M. Ghannouchi, Z. Feng. A fully integrated C-band GaN MMIC Doherty power amplifier with high efficiency and compact size for 5G application. IEEE Access, 7 (2019), pp. 71665-71674
[26]
G. Nikandish, R.B. Staszewski, A. Zhu. Bandwidth enhancement of GaN MMIC Doherty power amplifiers using broadband transformer-based load modulation network. IEEE Access, 7 (2019), pp. 119844-119855
[27]
R.J. Liu, X.W. Zhu, J. Xia, D. Xia, L. Zhang, C. Yu. Design methodology using single resonate block for harmonic impedance matching in GaN MMIC Doherty amplifier. IEEE Microw Wirel Compon Lett, 31 (4) (2021), pp. 397-400
[28]
J. Pang, C. Chu, J. Wu, Z. Dai, M. Li, S. He, et al. Broadband GaN MMIC Doherty power amplifier using continuous-mode combining for 5G sub-6 GHz applications. IEEE J Solid State Circuits, 57 (7) (2022), pp. 2143-2154
AI Summary AI Mindmap
PDF(2613 KB)

Accesses

Citations

Detail

Sections
Recommended

/