Direct Ethylene Purification from Cracking Gas via a Metal-Organic Framework Through Pore Geometry Fitting

Yang Chen, Zhenduo Wu, Longlong Fan, Rajamani Krishna, Hongliang Huang, Yi Wang, Qizhao Xiong, Jinping Li, Libo Li

Engineering ›› 2024, Vol. 41 ›› Issue (10) : 84-92.

PDF(3318 KB)
PDF(3318 KB)
Engineering ›› 2024, Vol. 41 ›› Issue (10) : 84-92. DOI: 10.1016/j.eng.2024.01.024
Research
Article

Direct Ethylene Purification from Cracking Gas via a Metal-Organic Framework Through Pore Geometry Fitting

Author information +
History +

Abstract

The direct one-step separation of polymer-grade C2H4 from complex light hydrocarbon mixtures has high industrial significance but is very challenging. Herein, an ethylene-adsorption-weakening strategy is applied for precise regulation of the pore geometry of four tailor-made metal-organic frameworks (MOFs) with pillar-layered structures, dubbed TYUT-10/11/12/13. Based on its pore geometry design and functional group regulation, TYUT-12 exhibits exceptional selective adsorption selectivity toward C3H8, C3H6, C2H6, C2H2, and CO2 over C2H4; its C2H6/C2H4 adsorption selectivity reaches 4.56, surpassing the record value of 4.4 by Fe2(O2)(dobdc) (dobdc4− = 2,5-dioxido-1,4-benzenedicarboxylate). The weak π-π stacking binding affinity toward C2H4 in TYUT-12 is clearly demonstrated through a combination of neutron powder diffraction measurements and theoretical calculations. Breakthrough experiments demonstrate that C2H4 can be directly obtained from binary, ternary, quaternary, and six-component light hydrocarbon mixtures with over 99.95% purity.

Graphical abstract

Keywords

Metal-organic frameworks / Pore regulation / Adsorptive separation / One-step purification / C2H4 purification

Cite this article

Download citation ▾
Yang Chen, Zhenduo Wu, Longlong Fan, Rajamani Krishna, Hongliang Huang, Yi Wang, Qizhao Xiong, Jinping Li, Libo Li. Direct Ethylene Purification from Cracking Gas via a Metal-Organic Framework Through Pore Geometry Fitting. Engineering, 2024, 41(10): 84‒92 https://doi.org/10.1016/j.eng.2024.01.024

References

[1]
E.D. Bloch, W.L. Queen, R. Krishna, J.M. Zadrozny, C.M. Brown, J.R. Long. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science, 335 (6076) (2012), pp. 1606-1610.
[2]
X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 353 (6295) (2016), pp. 141-144.
[3]
Q. Dong, Y. Huang, K. Hyeon-Deuk, I.Y. Chang, J. Wan, C. Chen, et al. Shape- and size-dependent kinetic ethylene sieving from a ternary mixture by a trap-and-flow channel crystal. Adv Funct Mater, 32 (38) (2022), p. 2203745.
[4]
P.Q. Liao, W.X. Zhang, J.P. Zhang, X.M. Chen.Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat Commun, 6 (2015), p. 8697.
[5]
H.G. Hao, Y.F. Zhao, D.M. Chen, J.M. Yu, K. Tan, S. Ma, et al. Simultaneous trapping of C2H2 and C2H6 from a ternary mixture of C2H2/C2H4/C2H6 in a robust metal-organic framework for the purification of C2H4. Angew Chem Int Ed Engl, 57 (49) (2018), pp. 16067-16071.
[6]
P. Zhang, Y. Zhong, Y. Zhang, Z. Zhu, Y. Liu, Y. Su, et al. Synergistic binding sites in a hybrid ultramicroporous material for one-step ethylene purification from ternary C2 hydrocarbon mixtures. Sci Adv, 8 (23) (2022), p. eabn9231.
[7]
X.W. Gu, J.X. Wang, E. Wu, H. Wu, W. Zhou, G. Qian, et al. Immobilization of Lewis basic sites into a stable ethane-selective MOF enabling one-step separation of ethylene from a ternary mixture. J Am Chem Soc, 144 (6) (2022), pp. 2614-2623.
[8]
R.B. Lin, L. Li, H.L. Zhou, H. Wu, C. He, S. Li, et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat Mater, 17 (12) (2018), pp. 1128-1133.
[9]
D.S. Sholl, R.P. Lively. Seven chemical separations to change the world. Nature, 532 (7600) (2016), pp. 435-437.
[10]
A. Cadiau, K. Adil, P.M. Bhatt, Y. Belmabkhout, M. Eddaoudi. A metal-organic framework-based splitter for separating propylene from propane. Science, 353 (6295) (2016), pp. 137-140.
[11]
Y. Yang, L. Li, R.B. Lin, Y. Ye, Z. Yao, L. Yang, et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat Chem, 13 (10) (2021), pp. 933-939.
[12]
X.J. Kong, J.R. Li. An overview of metal-organic frameworks for green chemical engineering. Engineering., 7 (8) (2021), pp. 1115-1139.
[13]
J. Li, X. Han, X. Kang, Y. Chen, S. Xu, G.L. Smith, et al. Purification of propylene and ethylene by a robust metal-organic framework mediated by host-guest interactions. Angew Chem Int Ed Engl, 60 (28) (2021), pp. 15541-15547.
[14]
L. Li, R.B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 362 (6413) (2018), pp. 443-446.
[15]
M. Chang, F. Wang, Y. Wei, Q. Yang, J.X. Wang, D. Liu, et al. Separation of CH4/N2 by an ultra-stable metal-organic framework with the highest breakthrough selectivity. AIChE J, 68 (9) (2022), p. e17794.
[16]
W. Liang, F. Xu, X. Zhou, J. Xiao, Q. Xia, Y. Li, et al. Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene. Chem Eng Sci, 148 (2016), pp. 275-281.
[17]
Y. Chen, Y. Du, Y. Wang, R. Krishna, L. Li, J. Yang, et al. A stable metal-organic framework with well-matched pore cavity for efficient acetylene separation. AIChE J, 67 (5) (2021), p. e17152.
[18]
S. Xian, J. Peng, H. Pandey, T. Thonhauser, H. Wang, J. Li. Robust metal-organic frameworks with high industrial applicability in efficient recovery of C3H8 and C2H6 from natural gas upgrading. Engineering, 23 (2023), pp. 56-63.
[19]
Y. Wang, C. Hao, W. Fan, M. Fu, X. Wang, Z. Wang, et al. One-step ethylene purification from an acetylene/ethylene/ethane ternary mixture by cyclopentadiene cobalt-functionalized metal-organic frameworks. Angew Chem Int Ed Engl, 60 (20) (2021), pp. 11350-11358.
[20]
C. Gu, N. Hosono, J.J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science, 363 (6425) (2019), pp. 387-391.
[21]
Y. Wang, S.B. Peh, D. Zhao. Alternatives to cryogenic distillation: advanced porous materials in adsorptive light olefin/paraffin separations. Small, 15 (25) (2019), p. 1900058.
[22]
C.X. Chen, Z.W. Wei, T. Pham, P.C. Lan, L. Zhang, K.A. Forrest, et al. Nanospace engineering of metal-organic frameworks through dynamic spacer installation of multifunctionalities for efficient separation of ethane from ethane/ethylene mixtures. Angew Chem Int Ed Engl, 60 (17) (2021), pp. 9680-9685.
[23]
Q. Ren. Advancements in MOF-based engineered materials for efficient separation processes. Engineering, 23 (2023), pp. 1-2.
[24]
J.R. Li, R.J. Kuppler, H.C. Zhou. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev, 38 (5) (2009), pp. 1477-1504.
[25]
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi. The chemistry and applications of metal-organic frameworks. Science, 341 (6149) (2013), p. 1230444.
[26]
H. Zeng, M. Xie, T. Wang, R.J. Wei, X.J. Xie, Y. Zhao, et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature, 595 (7868) (2021), pp. 542-548.
[27]
L. Wang, H. Huang, X. Zhang, H. Zhao, F. Li, Y. Gu.Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord Chem Rev, 484 (2023), p. 215111.
[28]
Z. Xu, X. Xiong, J. Xiong, R. Krishna, L. Li, Y. Fan, et al. A robust Th-azole framework for highly efficient purification of C2H4 from a C2H4/C2H2/C2H6 mixture. Nat Commun, 11 (2020), p. 3163.
[29]
B. Zhu, J.W. Cao, S. Mukherjee, T. Pham, T. Zhang, T. Wang, et al. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. J Am Chem Soc, 143 (3) (2021), pp. 1485-1492.
[30]
Y. Jiang, Y. Hu, B. Luan, L. Wang, R. Krishna, H. Ni, et al. Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF. Nat Commun, 14 (2023), p. 401.
[31]
E. Wu, X.W. Gu, D. Liu, X. Zhang, H. Wu, W. Zhou, et al. Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification. Nat Commun, 14 (2023), p. 6146.
[32]
K.J. Chen, D.G. Madden, S. Mukherjee, T. Pham, K.A. Forrest, A. Kumar, et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science, 366 (6462) (2019), pp. 241-246.
[33]
J.W. Cao, S. Mukherjee, T. Pham, Y. Wang, T. Wang, T. Zhang, et al. One-step ethylene production from a four-component gas mixture by a single physisorbent. Nat Commun, 12 (2021), p. 6507.
[34]
S. Laha, N. Dwarkanath, A. Sharma, D. Rambabu, S. Balasubramanian, T.K. Maji. Tailoring a robust Al-MOF for trapping C2H6 and C2H2 towards efficient C2H4 purification from quaternary mixtures. Chem Sci, 13 (24) (2022), pp. 7172-7180.
[35]
H. Sun, F. Chen, R. Chen, J. Li, L. Guo, Y. Liu, et al. Customizing metal-organic frameworks by lego-brick strategy for one-step purification of ethylene from a quaternary gas mixture. Small, 19 (21) (2023), p. 2208182.
[36]
R.B. Lin, H. Wu, L. Li, X.L. Tang, Z. Li, J. Gao, et al. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks. J Am Chem Soc, 140 (40) (2018), pp. 12940-12946.
[37]
B. Li, H.M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen. Emerging multifunctional metal-organic framework materials. Adv Mater, 28 (40) (2016), pp. 8819-8860.
[38]
W. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, et al. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J Am Chem Soc, 142 (19) (2020), pp. 8728-8737.
[39]
S. Jeong, D. Kim, S. Shin, D. Moon, S.J. Cho, M.S. Lah. Combinational synthetic approaches for isoreticular and polymorphic metal-organic frameworks with tuned pore geometries and surface properties. Chem Mater, 26 (4) (2014), pp. 1711-1719.
[40]
C. Gao, S. Liu, L. Xie, Y. Ren, J. Cao, C. Sun. Design and construction of a microporous metal-organic framework based on the pillared-layer motif. CrystEngComm, 9 (7) (2007), pp. 545-547.
[41]
Bruker. SAINT. Madison: Bruker AXS, Inc.; 2009.
[42]
Sheldrick GM.SADABS: program for empirical absorption correction. Gottingen: University of Gottingen; 1996.
[43]
G.M. Sheldrick. A short history of SHELX. Acta Crystallogr Sect A Found Adv, 64 (Pt 1) (2008), pp. 112-122.
[44]
J. Xu, Y. Xia, Z. Li, H. Chen, X. Wang, Z. Sun, et al. Multi-physics instrument: total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source. Nucl Instrum Methods Phys Res Sect A, 1013 (2021), p. 165642.
[45]
Y. Xiao, T. Liu, J. Liu, L. He, J. Chen, J. Zhang, et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials. Nano Energy, 49 (2018), pp. 77-85.
[46]
D. Lv, P. Zhou, J. Xu, S. Tu, F. Xu, J. Yan, et al. Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. Chem Eng J, 431 (Pt 3) (2022), p. 133208.
[47]
R. Krishna. Synergistic and antisynergistic intracrystalline diffusional influences on mixture separations in fixed-bed adsorbers. Precis Chem, 1 (2) (2023), pp. 83-93.
AI Summary AI Mindmap
PDF(3318 KB)

Accesses

Citations

Detail

Sections
Recommended

/