Equatorial Ionospheric Scintillation Measurement in Advanced Land Observing Satellite Phased Array-Type L-Band Synthetic Aperture Radar Observations

Yifei Ji, Zhen Dong, Yongsheng Zhang, Feixiang Tang, Wenfei Mao, Haisheng Zhao, Zhengwen Xu, Qingjun Zhang, Bingji Zhao, Heli Gao

Engineering ›› 2025, Vol. 47 ›› Issue (4) : 70-85.

PDF(5177 KB)
PDF(5177 KB)
Engineering ›› 2025, Vol. 47 ›› Issue (4) : 70-85. DOI: 10.1016/j.eng.2024.01.027
Research
Article

Equatorial Ionospheric Scintillation Measurement in Advanced Land Observing Satellite Phased Array-Type L-Band Synthetic Aperture Radar Observations

Author information +
History +

Abstract

Amplitude stripes imposed by ionospheric scintillation have been frequently observed in many of the equatorial nighttime acquisitions of the Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR). This type of ionospheric artifact impedes PALSAR interferometric and polarimetric applications, and its formation cause, morphology, and negative influence have been deeply investigated. However, this artifact can provide an alternative opportunity in a positive way for probing and measuring ionosphere scintillation. In this paper, a methodology for measuring ionospheric scintillation parameters from PALSAR images with amplitude stripes is proposed. Firstly, sublook processing is beneficial for recovering the scattered stripes from a single-look complex image; the amplitude stripe pattern is extracted via band-rejection filtering in the frequency domain of the sublook image. Secondly, the amplitude spectrum density function (SDF) is estimated from the amplitude stripe pattern. Thirdly, a fitting scheme for measuring the scintillation strength and spectrum index is conducted between the estimated and theoretical long-wavelength SDFs. In addition, another key parameter, the scintillation index, can be directly measured from the amplitude stripe pattern or indirectly derived from the scintillation strength and spectrum index. The proposed methodology is fully demonstrated on two groups of PALSAR acquisitions in the presence of amplitude stripes. Self-validation is conducted by comparing the measured and derived scintillation index and by comparing the measurements of range lines and azimuth lines. Cross-validation is performed by comparing the PALSAR measurements with in situ Global Position System (GPS) measurements. The processing results demonstrate a powerful capability to robustly measure ionospheric scintillation parameters from space with high spatial resolution.

Graphical abstract

Keywords

Synthetic aperture radar / Ionospheric sounding / Ionospheric scintillation / Amplitude stripes / Global Position System ionospheric measurement

Cite this article

Download citation ▾
Yifei Ji, Zhen Dong, Yongsheng Zhang, Feixiang Tang, Wenfei Mao, Haisheng Zhao, Zhengwen Xu, Qingjun Zhang, Bingji Zhao, Heli Gao. Equatorial Ionospheric Scintillation Measurement in Advanced Land Observing Satellite Phased Array-Type L-Band Synthetic Aperture Radar Observations. Engineering, 2025, 47(4): 70‒85 https://doi.org/10.1016/j.eng.2024.01.027

References

[1]
Ishimaru A, Kuga Y, Liu J, Kim Y, Freeman T.Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz.Radio Sci 1999; 34(1):257-268.
[2]
Xu ZW, Wu J, Wu ZS.A survey of ionosphere effects on space-based radar.Waves Random Media 2004; 14(2):S189.
[3]
Belcher DP.Theoretical limits on SAR imposed by the ionosphere.IET Radar Sonar Navig 2008; 2(6):435-448.
[4]
Meyer FJ.Performance requirements for ionospheric correction of low-frequency SAR data.IEEE Trans Geosci Remote Sens 2011; 49(10):3694-3702.
[5]
Meyer FJ, Nicoll JB.Prediction, detection, and correction of Faraday rotation in full-polarimetric L-band SAR data.IEEE Trans Geosci Remote Sens 2008; 46(10):3076-3086.
[6]
Meyer F, Bamler R, Jakowski N, Fritz T.The potential of low-frequency SAR systems for mapping ionospheric TEC distributions.IEEE Geosci Remote Sens Lett 2006; 3(4):560-564.
[7]
Yang Z, Zhang Q, Ding X, Chen W.Analysis of the quality of daily DEM generation with geosynchronous InSAR.Engineering 2020; 6(8):913-918.
[8]
Liao H, Meyer FJ, Scheuchl B, Mouginot J, Joughin I, Rignot E.Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions.Remote Sens Environ 2018; 209:166-180.
[9]
Zhang B, Ding X, Amelung F, Wang C, Xu W, Zhu W, et al.Impact of ionosphere on InSAR observation and coseismic slip inversion: improved slip model for the 2010 Maule, Chile, earthquake.Remote Sens Environ 2021; 267:112733.
[10]
Meyer FJ, Chotoo K, Chotoo SD, Huxtable BD, Carrano CS.The influence of equatorial scintillation on L-band SAR image quality and phase.IEEE Trans Geosci Remote Sens 2016; 54(2):869-880.
[11]
Kim JS, Papathanassiou KP, Sato H, Quegan S.Detection and estimation of equatorial spread F scintillations using synthetic aperture radar.IEEE Trans Geosci Remote Sens 2017; 55(12):6713-6725.
[12]
Ji Y, Zhang Y, Zhang Q, Dong Z.Comments on “the influence of equatorial scintillation on L-band SAR image quality and phase”.IEEE Trans Geosci Remote Sens 2019; 57(9):7300-7301.
[13]
Ji Y, Zhang Y, Dong Z, Zhang Q, Li D, Yao B.Impacts of ionospheric irregularities on L-band geosynchronous synthetic aperture radar.IEEE Trans Geosci Remote Sens 2020; 58(6):3941-3954.
[14]
Ji Y, Dong Z, Zhang Y, Zhang Q, Yu L, Qin B.Measuring ionospheric scintillation parameters from SAR images using phase gradient autofocus: a case study.IEEE Trans Geosci Remote Sens 2022; 60:5200212.
[15]
Ji Y, Dong Z, Zhang Y, Zhang Q.An autofocus approach with applications to ionospheric scintillation compensation for spaceborne SAR images.IEEE Trans Aerosp Electron Syst 2022; 58(2):989-1004.
[16]
Xu ZW, Wu J, Wu ZS.Potential effects of the ionosphere on space-based SAR imaging.IEEE Trans Antenna Propag 2008; 56(7):1968-1975.
[17]
Wang C, Zhang M, Xu ZW, Chen C, Sheng DS.Effects of anisotropic ionospheric irregularities on space-borne SAR imaging.IEEE Trans Antenna Propag 2014; 62(9):4664-4673.
[18]
Wang C, Zhang M, Xu ZW, Chen C, Guo LX.Cubic phase distortion and irregular degradation on SAR imaging due to the ionosphere.IEEE Trans Geosci Remote Sens 2015; 53(6):3442-3451.
[19]
Hu C, Li Y, Dong X, Wang R, Ao D.Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation.IEEE Trans Geosci Remote Sens 2017; 55(1):159-172.
[20]
Mannix CR, Belcher DP, Cannon PS.Measurement of ionospheric scintillation parameters from SAR images using corner reflectors.IEEE Trans Geosci Remote Sens 2017; 55(12):6695-6702.
[21]
Belcher DP, Mannix CR, Cannon PS.Measurement of the ionospheric scintillation parameter CkL from SAR images of clutter.IEEE Trans Geosci Remote Sens 2017; 55(10):5937-5943.
[22]
Ji Y, Zhang Q, Zhang Y, Dong Z.L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities.Sci China Inf Sci 2017; 60:060308.
[23]
Ji Y, Zhang Q, Zhang Y, Dong Z, Yao B.Spaceborne P-band SAR imaging degradation by anisotropic ionospheric irregularities: a comprehensive numerical study.IEEE Trans Geosci Remote Sens 2020; 58(8):5516-5526.
[24]
Ji Y, Dong Z, Zhang Y, Zhang Q, Yao B.Extended scintillation phase gradient autofocus in future spaceborne P-band SAR mission.Sci China Inf Sci 2021; 64:212303.
[25]
Ji Y, Yu C, Zhang Q, Dong Z, Zhang Y, Wang Y.An ionospheric phase screen projection method of phase gradient autofocus in spaceborne SAR.IEEE Geosci Remote Sens Lett 2022; 19:4504205.
[26]
Tang F, Ji Y, Zhang Y, Dong Z, Wang Z, Zhang Q, et al.Drifting ionospheric scintillation simulation for L-band geosynchronous SAR.IEEE J Sel Top Appl Earth Obs Remote Sens 2023; 17:842-854.
[27]
Carrano CS, Groves KM, Caton RG.Simulating the impacts of ionospheric scintillation on L band SAR image formation.Radio Sci 2012; 47(4):1-14.
[28]
Belcher DP, Cannon PS.Amplitude scintillation effects on SAR.IET Radar Sonar Navig 2014; 8(6):658-666.
[29]
Mohanty S, Singh G.Improved POLSAR model-based decomposition interpretation under scintillation conditions.IEEE Trans Geosci Remote Sens 2019; 57(10):7567-7578.
[30]
Gomba G, de F Zan.Bayesian data combination for the estimation of ionospheric effects in SAR interferograms.IEEE Trans Geosci Remote Sens 2017; 55(11):6582-6593.
[31]
Roth AP, Huxtable BD, Chotoo K, Chotoo SD, Caton RG.Detection and mitigation of ionospheric stripes in PALSAR data.In: Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium; 2012 Jul 22–27; Munich, Germany. Piscataway: IEE E; 2012. p. 1621–4.
[32]
Gama FF, Wiederkehr NC, Bispo PC.Removal of ionospheric effects from Sigma naught images of the ALOS/PALSAR-2 satellite.Remote Sens 2022; 14(4):962.
[33]
Mohanty S, Khati U, Singh G, Chandrasekharb E.Correction of amplitude scintillation effect in fully polarimetric SAR coherency matrix data.ISPRS J Photogramm Remote Sens 2020; 164:184-199.
[34]
Gan N, Ji Y, Tang F, Zhang Y, Dong Z.Correcting and measuring ionospheric scintillation amplitude stripes in L-band SAR images.IEEE Geosci Remote Sens Lett 2022; 19:4515505.
[35]
Monhanty S, Singh G, Carrano CS, Sripathi S.Ionospheric scintillation observation using space-borne synthetic aperture radar data.Radio Sci 2018; 53(10):1187-1202.
[36]
Monhanty S, Carrano CS, Singh G.Effect of anisotropy on ionospheric scintillations observed by SAR.IEEE Trans Geosci Remote Sens 2019; 57(9):6888-6899.
[37]
Kim JS, Papathanassiou K.SAR observation of ionosphere using range/azimuth sub-bands.In: Proceedings of the 10th European Conference on Synthetic Aperture Radar; 2014 Jun 3–5; Berlin, Germany. Frankfurt: VD E; 2014.
[38]
Kim JS, Sato H, Papathanassiou K.Estimation of drift of equatorial ionosphere of post sunset-sector by means of low frequency space-borne SAR.In: Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium; 2016 Jul 10–15; Beijing, China. Piscataway: IEE E; 2016. p. 6946–9.
[39]
Rino CL.A power law phase screen model for ionospheric scintillation: 1. Weak scatter.Radio Sci 1979; 14(6):1135-1145.
[40]
Rino CL.A power law phase screen model for ionospheric scintillation: 2. Strong scatter.Radio Sci 1979; 14(6):1147-1155.
[41]
Rino CL.The theory of scintillation with applications in remote sensing.Wiley & Sons, Inc., Hoboken (2011)
[42]
Yeh KC, Liu CH.Radio wave scintillations in the ionosphere.Proc IEEE 1982; 70(4):324-360.
[43]
Rino CL.Double-passage radar cross section enhancements.Radio Sci 1994; 29(2):495-501.
[44]
Rino C, Yokoyama T, Carrano C.Dynamic spectral characteristics of high-resolution simulated equatorial plasma bubbles.Prog Earth Planet Sci 2018; 5(83):1-13.
[45]
Rino C, Yokoyama T, Carrano C.A three-dimensional stochastic structure model derived from high-resolution isolated equatorial plasma bubble simulations.Earth Planets Space 2023; 75(1):64.
[46]
Rino C, Carrano C.On the characterization of intermediate-scale ionospheric structure.Radio Sci 2018; 53(11):1316-1327.
PDF(5177 KB)

Accesses

Citations

Detail

Sections
Recommended

/